

Dedupe 1.6.7

dedupe is a library that uses machine learning to perform de-duplication and entity resolution quickly on structured data.

dedupe will help you:

	remove duplicate entries from a spreadsheet of names and addresses

	link a list with customer information to another with order history, even without unique customer id’s

	take a database of campaign contributions and figure out which ones were made by the same person, even if the names were entered slightly differently for each record

dedupe takes in human training data and comes up with the best rules for your dataset to quickly and automatically find similar records, even with very large databases.

Important links

	Documentation: https://dedupe.readthedocs.io/

	Repository: https://github.com/datamade/dedupe

	Issues: https://github.com/datamade/dedupe/issues

	Mailing list: https://groups.google.com/forum/#!forum/open-source-deduplication

	Examples: https://github.com/datamade/dedupe-examples

	IRC channel, #dedupe on irc.freenode.net [http://webchat.freenode.net/?channels=dedupe]

Tools built with dedupe

Dedupe.io [https://dedupe.io/]
A full service web service powered by dedupe for de-duplicating and find matches in your messy data. It provides an easy-to-use interface and provides cluster review and automation, as well as advanced record linkage, continuous matching and API integrations. See the product page [https://dedupe.io/] and the launch blog post [https://datamade.us/blog/introducing-dedupeio].

csvdedupe [https://github.com/datamade/csvdedupe]
Command line tool for de-duplicating and linking [https://github.com/datamade/csvdedupe#csvlink-usage] CSV files. Read about it on Source Knight-Mozilla OpenNews [https://source.opennews.org/en-US/articles/introducing-cvsdedupe/].

Contents

	API Documentation

	Variable definitions

	Mac OS X Install Notes

	How it works

	Bibliography

Features

	machine learning - reads in human labeled data to automatically create optimum weights and blocking rules

	runs on a laptop - makes intelligent comparisons so you don’t need a powerful server to run it

	built as a library - so it can be integrated in to your applications or import scripts

	extensible - supports adding custom data types, string comparators and blocking rules

	open source - anyone can use, modify or add to it

Installation

pip install "numpy>=1.9"
pip install dedupe

Mac OS X Install Notes

With default configurations, dedupe cannot do parallel processing on Mac OS X.
Read about instructions on how to enable this.

Using dedupe

Dedupe is a library and not a stand-alone command line tool. To
demonstrate its usage, we have come up with a few example recipes for
different sized datasets for you [https://github.com/datamade/dedupe-examples/archive/0.5.zip]
(repo [https://github.com/datamade/dedupe-examples], as well as
annotated source code:

	Small data deduplication [http://datamade.github.com/dedupe-examples/docs/csv_example.html]

	Bigger data deduplication ~700K [http://datamade.github.com/dedupe-examples/docs/mysql_example.html]

	Record Linkage [http://datamade.github.com/dedupe-examples/docs/record_linkage_example.html]

	Postgres [http://datamade.github.io/dedupe-examples/docs/pgsql_example.html]

	Patent Author Disambiguation [http://datamade.github.io/dedupe-examples/docs/patent_example.html]

Errors / Bugs

If something is not behaving intuitively, it is a bug, and should be
reported. Report it here [https://github.com/datamade/dedupe/issues]

Contributing to dedupe

Check out dedupe [https://github.com/datamade/dedupe]
repo for how to contribute to the library.

Check out dedupe-examples [https://github.com/datamade/dedupe-examples] for how to contribute
a useful example of using dedupe.

Citing dedupe

If you use Dedupe in an academic work, please give this citation:

Gregg, Forest and Derek Eder. 2015. Dedupe. https://github.com/datamade/dedupe.

Indices and tables

	Index

	Module Index

	Search Page

API Documentation

Dedupe Objects

Class for active learning deduplication. Use deduplication when you have
data that can contain multiple records that can all refer to the same
entity.

	
class Dedupe(variable_definition, [data_sample[, [num_cores]])

	Initialize a Dedupe object with a field definition

	Parameters:	
	variable_definition (dict) – A variable definition is list of
dictionaries describing the variables
will be used for training a model.

	num_cores (int) – the number of cpus to use for parallel
processing, defaults to the number of cpus
available on the machine

	data_sample – __DEPRECATED__

initialize from a defined set of fields
variables = [
 {'field' : 'Site name', 'type': 'String'},
 {'field' : 'Address', 'type': 'String'},
 {'field' : 'Zip', 'type': 'String', 'has missing':True},
 {'field' : 'Phone', 'type': 'String', 'has missing':True}
]

deduper = dedupe.Dedupe(variables)

	
sample(data[, [sample_size=15000[, blocked_proportion=0.5[, original_length]]])

	

In order to learn how to deduplicate your records, dedupe needs a
sample of your records to train on. This method takes a mixture of
random sample of pairs of records and a selection of pairs of
records that are much more likely to be duplicates.

	Parameters:	
	data (dict) – A dictionary-like object indexed by record ID
where the values are dictionaries representing records.

	sample_size (int) – Number of record tuples to return. Defaults
to 15,000.

	blocked_proportion (float) – The proportion of record pairs
to be sampled from similar
records, as opposed to randomly
selected pairs. Defaults to
0.5.

	original_length – If data is a subsample of all your data,
original_length should be the size of
your complete data. By default,
original_length defaults to the length of
data.

deduper.sample(data_d, 150000, .5)

	
uncertainPairs()

	Returns a list of pairs of records from the sample of record pairs
tuples that Dedupe is most curious to have labeled.

This method is mainly useful for building a user interface for training
a matching model.

> pair = deduper.uncertainPairs()
> print pair
[({'name' : 'Georgie Porgie'}, {'name' : 'Georgette Porgette'})]

	
markPairs(labeled_examples)

	Add users labeled pairs of records to training data and update the
matching model

This method is useful for building a user interface for training a
matching model or for adding training data from an existing source.

	Parameters:	labeled_examples (dict) – a dictionary with two keys,
match and distinct the
values are lists that can contain
pairs of records.

labeled_examples = {'match' : [],
 'distinct' : [({'name' : 'Georgie Porgie'},
 {'name' : 'Georgette Porgette'})]
 }
deduper.markPairs(labeled_examples)

	
train([recall=0.95[, index_predicates=True]])

	Learn final pairwise classifier and blocking rules. Requires that
adequate training data has been already been provided.

	Parameters:	
	recall (float) – The proportion of true dupe pairs in our
training data that that we the learned blocks
must cover. If we lower the recall, there will
be pairs of true dupes that we will never
directly compare.

recall should be a float between 0.0 and 1.0,
the default is 0.95

	index_predicates (bool) – Should dedupe consider predicates
that rely upon indexing the
data. Index predicates can be slower
and take susbstantial memory.

Defaults to True.

deduper.train()

	
writeTraining(file_obj)

	Write json data that contains labeled examples to a file object.

	Parameters:	file_obj (file) – File object.

with open('./my_training.json', 'w') as f:
 deduper.writeTraining(f)

	
readTraining(training_file)

	Read training from previously saved training data file object

	Parameters:	training_file (file) – File object containing training data

with open('./my_training.json') as f:
 deduper.readTraining(f)

	
cleanupTraining()

	Delete data we used for training.

data_sample, training_pairs, training_data, and
activeLearner can be very large objects. When you are done
training you may want to free up the memory they use.

deduper.cleanupTraining()

	
threshold(data[, recall_weight=1.5])

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of data.

	Parameters:	
	data (dict) – a dictionary of records, where the keys are
record_ids and the values are dictionaries with
the keys being field names

	recall_weight (float) – sets the tradeoff between precision
and recall. I.e. if you care twice as
much about recall as you do precision,
set recall_weight to 2.

> threshold = deduper.threshold(data, recall_weight=2)
> print threshold
0.21

	
match(data[, threshold = 0.5[, max_components = 30000]])

	Identifies records that all refer to the same entity, returns
tuples containing a sequence of record ids and corresponding
sequence of confidence score as a float between 0 and 1. The
record_ids within each set should refer to the same entity and the
confidence score is a measure of our confidence a particular entity
belongs in the cluster.

This method should only used for small to moderately sized datasets for
larger data, use matchBlocks

	Parameters:	
	data (dict) – a dictionary of records, where the keys are
record_ids and the values are dictionaries with
the keys being field names

	threshold (float) – a number between 0 and 1 (default is 0.5).
We will consider records as potential
duplicates if the predicted probability of
being a duplicate is above the threshold.

Lowering the number will increase recall,
raising it will increase precision

	max_components (int) – Dedupe splits records into connected
components and then clusters each
component. Clustering uses about N^2
memory, where N is the size of the
components. Max components sets the
maximum size of a component dedupe will
try to cluster. If a component is larger
than max_components, dedupe will try to
split it into smaller
components. Defaults to 30K.

> duplicates = deduper.match(data, threshold=0.5)
> print duplicates
[((1, 2, 3),
 (0.790,
 0.860,
 0.790)),
 ((4, 5),
 (0.720,
 0.720)),
 ((10, 11),
 (0.899,
 0.899))]

	
blocker.index_fields

	A dictionary of the Index Predicates that will used for blocking. The
keys are the fields the predicates will operate on.

	
blocker.index(field_data, field)

	Indexes the data from a field for use in a index predicate.

	Parameters:	
	field data (set) – The unique field values that appear in your data.

	field (string) – The name of the field

for field in deduper.blocker.index_fields :
 field_data = set(record[field] for record in data)
 deduper.index(field_data, field)

	
blocker(data)

	Generate the predicates for records. Yields tuples of (predicate,
record_id).

	Parameters:	data (list) – A sequence of tuples of (record_id,
record_dict). Can often be created by
data_dict.items().

> data = [(1, {'name' : 'bob'}), (2, {'name' : 'suzanne'})]
> blocked_ids = deduper.blocker(data)
> print list(blocked_ids)
[('foo:1', 1), ..., ('bar:1', 100)]

	
matchBlocks(blocks[, threshold=.5])

	Partitions blocked data and returns a list of clusters, where each
cluster is a tuple of record ids

Keyword arguments

	Parameters:	
	blocks (list) – Sequence of records blocks. Each record block
is a tuple containing records to compare. Each
block should contain two or more records.
Along with each record, there should also be
information on the blocks that cover that
record.

For example, if we have three records:

(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Sam', 'address' : '123 Main'})

and two predicates: “Whole name” and “Whole address”.
These predicates will produce the following blocks:

Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})

Block 2 (Whole name)
(3, {'name' : 'Sam', 'address' : '123 Main'})

Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Sam', 'address' : '123 Main'})

So, the blocks you feed to matchBlocks should look
like this, after filtering out the singleton block.

blocks =((
 (1, {'name' : 'Pat', 'address' : '123 Main'}, set([])),
 (2, {'name' : 'Pat', 'address' : '123 Main'}, set([]))
),
 (
 (1, {'name' : 'Pat', 'address' : '123 Main'}, set([1])),
 (2, {'name' : 'Pat', 'address' : '123 Main'}, set([1])),
 (3, {'name' : 'Sam', 'address' : '123 Main'}, set([]))
)
)
deduper.matchBlocks(blocks)

Within each block, dedupe will compare every
pair of records. This is expensive. Checking to
see if two sets intersect is much cheaper, and
if the block coverage information for two
records does intersect, that means that this
pair of records has been compared in a previous
block, and dedupe will skip comparing this pair
of records again.

	threshold (float) – Number between 0 and 1 (default is .5). We
will only consider as duplicates record
pairs as duplicates if their estimated
duplicate likelihood is greater than the
threshold.

Lowering the number will increase recall,
raising it will increase precision.

	
classifier

	By default, the classifier is a L2 regularized logistic regression
classifier [https://pypi.python.org/pypi/rlr]. If you want to use
a different classifier, you can overwrite this attribute with your
custom object. Your classifier object must be have fit and
predict_proba methods, like sklearn models [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html].

from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()

	
thresholdBlocks(blocks, recall_weight=1.5)

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks
and matchBlocks. This methods require you to create blocks of
records. See the documentation for the matchBlocks method
for how to construct blocks.
.. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

	Parameters:	
	blocks (list) – See `matchBlocks`

	recall_weight (float) – Sets the tradeoff between precision and
recall. I.e. if you care twice as much
about recall as you do precision, set
recall_weight to 2.

	
writeSettings(file_obj[, index=False])

	Write a settings file that contains the data model and predicates
to a file object.

	Parameters:	
	file_obj (file) – File object.

	bool (index) – Should the indexes of index predicates be
saved. You will probably only want to call
this after indexing all of your records.

with open('my_learned_settings', 'wb') as f:
 deduper.writeSettings(f, indexes=True)

	
loaded_indices

	Indicates whether indices for index predicates was loaded from a
settings file.

StaticDedupe Objects

Class for deduplication using saved settings. If you have already
trained dedupe, you can load the saved settings with StaticDedupe.

	
class StaticDedupe(settings_file[, num_cores])

	Initialize a Dedupe object with saved settings

	Parameters:	
	settings_file (file) – A file object containing settings info produced from
the Dedupe.writeSettings() of a
previous, active Dedupe object.

	num_cores (int) – the number of cpus to use for parallel
processing, defaults to the number of cpus
available on the machine

	
threshold(data[, recall_weight=1.5])

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of data.

	Parameters:	
	data (dict) – a dictionary of records, where the keys are
record_ids and the values are dictionaries with
the keys being field names

	recall_weight (float) – sets the tradeoff between precision
and recall. I.e. if you care twice as
much about recall as you do precision,
set recall_weight to 2.

> threshold = deduper.threshold(data, recall_weight=2)
> print threshold
0.21

	
match(data[, threshold = 0.5[, max_components = 30000]])

	Identifies records that all refer to the same entity, returns
tuples containing a sequence of record ids and corresponding
sequence of confidence score as a float between 0 and 1. The
record_ids within each set should refer to the same entity and the
confidence score is a measure of our confidence a particular entity
belongs in the cluster.

This method should only used for small to moderately sized datasets for
larger data, use matchBlocks

	Parameters:	
	data (dict) – a dictionary of records, where the keys are
record_ids and the values are dictionaries with
the keys being field names

	threshold (float) – a number between 0 and 1 (default is 0.5).
We will consider records as potential
duplicates if the predicted probability of
being a duplicate is above the threshold.

Lowering the number will increase recall,
raising it will increase precision

	max_components (int) – Dedupe splits records into connected
components and then clusters each
component. Clustering uses about N^2
memory, where N is the size of the
components. Max components sets the
maximum size of a component dedupe will
try to cluster. If a component is larger
than max_components, dedupe will try to
split it into smaller
components. Defaults to 30K.

> duplicates = deduper.match(data, threshold=0.5)
> print duplicates
[((1, 2, 3),
 (0.790,
 0.860,
 0.790)),
 ((4, 5),
 (0.720,
 0.720)),
 ((10, 11),
 (0.899,
 0.899))]

	
blocker.index_fields

	A dictionary of the Index Predicates that will used for blocking. The
keys are the fields the predicates will operate on.

	
blocker.index(field_data, field)

	Indexes the data from a field for use in a index predicate.

	Parameters:	
	field data (set) – The unique field values that appear in your data.

	field (string) – The name of the field

for field in deduper.blocker.index_fields :
 field_data = set(record[field] for record in data)
 deduper.index(field_data, field)

	
blocker(data)

	Generate the predicates for records. Yields tuples of (predicate,
record_id).

	Parameters:	data (list) – A sequence of tuples of (record_id,
record_dict). Can often be created by
data_dict.items().

> data = [(1, {'name' : 'bob'}), (2, {'name' : 'suzanne'})]
> blocked_ids = deduper.blocker(data)
> print list(blocked_ids)
[('foo:1', 1), ..., ('bar:1', 100)]

	
matchBlocks(blocks[, threshold=.5])

	Partitions blocked data and returns a list of clusters, where each
cluster is a tuple of record ids

Keyword arguments

	Parameters:	
	blocks (list) – Sequence of records blocks. Each record block
is a tuple containing records to compare. Each
block should contain two or more records.
Along with each record, there should also be
information on the blocks that cover that
record.

For example, if we have three records:

(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Sam', 'address' : '123 Main'})

and two predicates: “Whole name” and “Whole address”.
These predicates will produce the following blocks:

Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})

Block 2 (Whole name)
(3, {'name' : 'Sam', 'address' : '123 Main'})

Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Sam', 'address' : '123 Main'})

So, the blocks you feed to matchBlocks should look
like this, after filtering out the singleton block.

blocks =((
 (1, {'name' : 'Pat', 'address' : '123 Main'}, set([])),
 (2, {'name' : 'Pat', 'address' : '123 Main'}, set([]))
),
 (
 (1, {'name' : 'Pat', 'address' : '123 Main'}, set([1])),
 (2, {'name' : 'Pat', 'address' : '123 Main'}, set([1])),
 (3, {'name' : 'Sam', 'address' : '123 Main'}, set([]))
)
)
deduper.matchBlocks(blocks)

Within each block, dedupe will compare every
pair of records. This is expensive. Checking to
see if two sets intersect is much cheaper, and
if the block coverage information for two
records does intersect, that means that this
pair of records has been compared in a previous
block, and dedupe will skip comparing this pair
of records again.

	threshold (float) – Number between 0 and 1 (default is .5). We
will only consider as duplicates record
pairs as duplicates if their estimated
duplicate likelihood is greater than the
threshold.

Lowering the number will increase recall,
raising it will increase precision.

	
classifier

	By default, the classifier is a L2 regularized logistic regression
classifier [https://pypi.python.org/pypi/rlr]. If you want to use
a different classifier, you can overwrite this attribute with your
custom object. Your classifier object must be have fit and
predict_proba methods, like sklearn models [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html].

from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()

	
thresholdBlocks(blocks, recall_weight=1.5)

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks
and matchBlocks. This methods require you to create blocks of
records. See the documentation for the matchBlocks method
for how to construct blocks.
.. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

	Parameters:	
	blocks (list) – See `matchBlocks`

	recall_weight (float) – Sets the tradeoff between precision and
recall. I.e. if you care twice as much
about recall as you do precision, set
recall_weight to 2.

	
writeSettings(file_obj[, index=False])

	Write a settings file that contains the data model and predicates
to a file object.

	Parameters:	
	file_obj (file) – File object.

	bool (index) – Should the indexes of index predicates be
saved. You will probably only want to call
this after indexing all of your records.

with open('my_learned_settings', 'wb') as f:
 deduper.writeSettings(f, indexes=True)

	
loaded_indices

	Indicates whether indices for index predicates was loaded from a
settings file.

RecordLink Objects

Class for active learning record linkage.

Use RecordLinkMatching when you have two datasets that you want to
merge. Each dataset, individually, should contain no duplicates. A
record from the first dataset can match one and only one record from the
second dataset and vice versa. A record from the first dataset need not
match any record from the second dataset and vice versa.

For larger datasets, you will need to use the thresholdBlocks and
matchBlocks. This methods require you to create blocks of records.
For RecordLink, each blocks should be a pairs of dictionaries of
records. Each block consists of all the records that share a particular
predicate, as output by the blocker method of RecordLink.

Within a block, the first dictionary should consist of records from the
first dataset, with the keys being record ids and the values being the
record. The second dictionary should consist of records from the
dataset.

Example

> data_1 = {'A1' : {'name' : 'howard'}}
> data_2 = {'B1' : {'name' : 'howie'}}
...
> blocks = defaultdict(lambda : ({}, {}))
>
> for block_key, record_id in linker.blocker(data_1.items()) :
> blocks[block_key][0].update({record_id : data_1[record_id]})
> for block_key, record_id in linker.blocker(data_2.items()) :
> if block_key in blocks :
> blocks[block_key][1].update({record_id : data_2[record_id]})
>
> blocked_data = blocks.values()
> print blocked_data
[({'A1' : {'name' : 'howard'}}, {'B1' : {'name' : 'howie'}})]

	
class RecordLink(variable_definition, [data_sample, [[num_cores]])

	Initialize a Dedupe object with a variable definition

	Parameters:	
	variable_definition (dict) – A variable definition is list of
dictionaries describing the variables
will be used for training a model.

	num_cores (int) – the number of cpus to use for parallel
processing, defaults to the number of cpus
available on the machine

	data_sample – __DEPRECATED__

We assume that the fields you want to compare across datasets have the
same field name.

	
sample(data_1, data_2[, sample_size=150000[, blocked_proportion=0.5[, original_length_1[, original_length_2]]]])

	

In order to learn how to link your records, dedupe needs a
sample of your records to train on. This method takes a mixture of
random sample of pairs of records and a selection of pairs of
records that are much more likely to be duplicates.

	Parameters:	
	data_1 (dict) – A dictionary of records from first dataset,
where the keys are record_ids and the
values are dictionaries with the keys being
field names.

	data_2 (dict) – A dictionary of records from second dataset,
same form as data_1

	sample_size (int) – The size of the sample to draw. Defaults to 150,000

	blocked_proportion (float) – The proportion of record pairs to
be sampled from similar records,
as opposed to randomly selected
pairs. Defaults to 0.5.

	original_length_1 – If data_1 is a subsample of your first dataset,
original_length_1 should be the size of
the complete first dataset. By default,
original_length_1 defaults to the length of
data_1

	original_length_2 – If data_2 is a subsample of your first dataset,
original_length_2 should be the size of
the complete first dataset. By default,
original_length_2 defaults to the length of
data_2

linker.sample(data_1, data_2, 150000)

	
threshold(data_1, data_2, recall_weight)

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of data.

	Parameters:	
	data_1 (dict) – a dictionary of records from first dataset,
where the keys are record_ids and the
values are dictionaries with the keys being
field names.

	data_2 (dict) – a dictionary of records from second dataset,
same form as data_1

	recall_weight (float) – sets the tradeoff between precision
and recall. I.e. if you care twice
as much about recall as you do
precision, set recall_weight to 2.

> threshold = deduper.threshold(data_1, data_2, recall_weight=2)
> print threshold
0.21

	
match(data_1, data_2, threshold)

	Identifies pairs of records that refer to the same entity, returns tuples
containing a set of record ids and a confidence score as a float between 0
and 1. The record_ids within each set should refer to the
same entity and the confidence score is the estimated probability that
the records refer to the same entity.

This method should only used for small to moderately sized datasets for
larger data, use matchBlocks

	Parameters:	
	data_1 (dict) – a dictionary of records from first dataset,
where the keys are record_ids and the
values are dictionaries with the keys being
field names.

	data_2 (dict) – a dictionary of records from second dataset,
same form as data_1

	threshold (float) – a number between 0 and 1 (default is
0.5). We will consider records as
potential duplicates if the predicted
probability of being a duplicate is
above the threshold.

Lowering the number will increase
recall, raising it will increase
precision

	
matchBlocks(blocks[, threshold=.5])

	Partitions blocked data and returns a list of clusters, where each
cluster is a tuple of record ids

Keyword arguments

	Parameters:	
	blocks (list) – Sequence of records blocks. Each record block
is a tuple containing two sequences of records,
the records from the first data set and the
records from the second dataset. Within each
block there should be at least one record from
each datasets. Along with each record, there
should also be information on the blocks that
cover that record.

For example, if we have two records from dataset
A and one record from dataset B:

Dataset A
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})

Dataset B
(3, {'name' : 'Pat', 'address' : '123 Main'})

and two predicates: “Whole name” and “Whole address”.
These predicates will produce the following blocks:

Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

Block 2 (Whole name)
(2, {'name' : 'Sam', 'address' : '123 Main'})

Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

So, the blocks you feed to matchBlocks should look
like this,

blocks =((
 [(1, {'name' : 'Pat', 'address' : '123 Main'}, set([]))],
 [(3, {'name' : 'Pat', 'address' : '123 Main'}, set([]))]
),
 (
 [(1, {'name' : 'Pat', 'address' : '123 Main'}, set([1])),
 (2, {'name' : 'Sam', 'address' : '123 Main'}, set([]))],
 [(3, {'name' : 'Pat', 'address' : '123 Main'}, set([1]))]

)
)
linker.matchBlocks(blocks)

Within each block, dedupe will compare every
pair of records. This is expensive. Checking to
see if two sets intersect is much cheaper, and
if the block coverage information for two
records does intersect, that means that this
pair of records has been compared in a previous
block, and dedupe will skip comparing this pair
of records again.

	threshold (float) – Number between 0 and 1 (default is .5). We
will only consider as duplicates record
pairs as duplicates if their estimated
duplicate likelihood is greater than the
threshold.

Lowering the number will increase recall,
raising it will increase precision.

	
uncertainPairs()

	Returns a list of pairs of records from the sample of record pairs
tuples that Dedupe is most curious to have labeled.

This method is mainly useful for building a user interface for training
a matching model.

> pair = deduper.uncertainPairs()
> print pair
[({'name' : 'Georgie Porgie'}, {'name' : 'Georgette Porgette'})]

	
markPairs(labeled_examples)

	Add users labeled pairs of records to training data and update the
matching model

This method is useful for building a user interface for training a
matching model or for adding training data from an existing source.

	Parameters:	labeled_examples (dict) – a dictionary with two keys,
match and distinct the
values are lists that can contain
pairs of records.

labeled_examples = {'match' : [],
 'distinct' : [({'name' : 'Georgie Porgie'},
 {'name' : 'Georgette Porgette'})]
 }
deduper.markPairs(labeled_examples)

	
train([recall=0.95[, index_predicates=True]])

	Learn final pairwise classifier and blocking rules. Requires that
adequate training data has been already been provided.

	Parameters:	
	recall (float) – The proportion of true dupe pairs in our
training data that that we the learned blocks
must cover. If we lower the recall, there will
be pairs of true dupes that we will never
directly compare.

recall should be a float between 0.0 and 1.0,
the default is 0.95

	index_predicates (bool) – Should dedupe consider predicates
that rely upon indexing the
data. Index predicates can be slower
and take susbstantial memory.

Defaults to True.

deduper.train()

	
writeTraining(file_obj)

	Write json data that contains labeled examples to a file object.

	Parameters:	file_obj (file) – File object.

with open('./my_training.json', 'w') as f:
 deduper.writeTraining(f)

	
readTraining(training_file)

	Read training from previously saved training data file object

	Parameters:	training_file (file) – File object containing training data

with open('./my_training.json') as f:
 deduper.readTraining(f)

	
cleanupTraining()

	Delete data we used for training.

data_sample, training_pairs, training_data, and
activeLearner can be very large objects. When you are done
training you may want to free up the memory they use.

deduper.cleanupTraining()

	
classifier

	By default, the classifier is a L2 regularized logistic regression
classifier [https://pypi.python.org/pypi/rlr]. If you want to use
a different classifier, you can overwrite this attribute with your
custom object. Your classifier object must be have fit and
predict_proba methods, like sklearn models [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html].

from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()

	
thresholdBlocks(blocks, recall_weight=1.5)

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks
and matchBlocks. This methods require you to create blocks of
records. See the documentation for the matchBlocks method
for how to construct blocks.
.. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

	Parameters:	
	blocks (list) – See `matchBlocks`

	recall_weight (float) – Sets the tradeoff between precision and
recall. I.e. if you care twice as much
about recall as you do precision, set
recall_weight to 2.

	
writeSettings(file_obj[, index=False])

	Write a settings file that contains the data model and predicates
to a file object.

	Parameters:	
	file_obj (file) – File object.

	bool (index) – Should the indexes of index predicates be
saved. You will probably only want to call
this after indexing all of your records.

with open('my_learned_settings', 'wb') as f:
 deduper.writeSettings(f, indexes=True)

	
loaded_indices

	Indicates whether indices for index predicates was loaded from a
settings file.

StaticRecordLink Objects

Class for record linkage using saved settings. If you have already
trained a record linkage instance, you can load the saved settings with
StaticRecordLink.

	
class StaticRecordLink(settings_file[, num_cores])

	Initialize a Dedupe object with saved settings

	Parameters:	
	settings_file (str) – File object containing settings data produced from
the RecordLink.writeSettings() of a
previous, active Dedupe object.

	num_cores (int) – the number of cpus to use for parallel
processing, defaults to the number of cpus
available on the machine

with open('my_settings_file', 'rb') as f:
 deduper = StaticDedupe(f)

	
threshold(data_1, data_2, recall_weight)

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of data.

	Parameters:	
	data_1 (dict) – a dictionary of records from first dataset,
where the keys are record_ids and the
values are dictionaries with the keys being
field names.

	data_2 (dict) – a dictionary of records from second dataset,
same form as data_1

	recall_weight (float) – sets the tradeoff between precision
and recall. I.e. if you care twice
as much about recall as you do
precision, set recall_weight to 2.

> threshold = deduper.threshold(data_1, data_2, recall_weight=2)
> print threshold
0.21

	
match(data_1, data_2, threshold)

	Identifies pairs of records that refer to the same entity, returns tuples
containing a set of record ids and a confidence score as a float between 0
and 1. The record_ids within each set should refer to the
same entity and the confidence score is the estimated probability that
the records refer to the same entity.

This method should only used for small to moderately sized datasets for
larger data, use matchBlocks

	Parameters:	
	data_1 (dict) – a dictionary of records from first dataset,
where the keys are record_ids and the
values are dictionaries with the keys being
field names.

	data_2 (dict) – a dictionary of records from second dataset,
same form as data_1

	threshold (float) – a number between 0 and 1 (default is
0.5). We will consider records as
potential duplicates if the predicted
probability of being a duplicate is
above the threshold.

Lowering the number will increase
recall, raising it will increase
precision

	
matchBlocks(blocks[, threshold=.5])

	Partitions blocked data and returns a list of clusters, where each
cluster is a tuple of record ids

Keyword arguments

	Parameters:	
	blocks (list) – Sequence of records blocks. Each record block
is a tuple containing two sequences of records,
the records from the first data set and the
records from the second dataset. Within each
block there should be at least one record from
each datasets. Along with each record, there
should also be information on the blocks that
cover that record.

For example, if we have two records from dataset
A and one record from dataset B:

Dataset A
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})

Dataset B
(3, {'name' : 'Pat', 'address' : '123 Main'})

and two predicates: “Whole name” and “Whole address”.
These predicates will produce the following blocks:

Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

Block 2 (Whole name)
(2, {'name' : 'Sam', 'address' : '123 Main'})

Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

So, the blocks you feed to matchBlocks should look
like this,

blocks =((
 [(1, {'name' : 'Pat', 'address' : '123 Main'}, set([]))],
 [(3, {'name' : 'Pat', 'address' : '123 Main'}, set([]))]
),
 (
 [(1, {'name' : 'Pat', 'address' : '123 Main'}, set([1])),
 (2, {'name' : 'Sam', 'address' : '123 Main'}, set([]))],
 [(3, {'name' : 'Pat', 'address' : '123 Main'}, set([1]))]

)
)
linker.matchBlocks(blocks)

Within each block, dedupe will compare every
pair of records. This is expensive. Checking to
see if two sets intersect is much cheaper, and
if the block coverage information for two
records does intersect, that means that this
pair of records has been compared in a previous
block, and dedupe will skip comparing this pair
of records again.

	threshold (float) – Number between 0 and 1 (default is .5). We
will only consider as duplicates record
pairs as duplicates if their estimated
duplicate likelihood is greater than the
threshold.

Lowering the number will increase recall,
raising it will increase precision.

	
classifier

	By default, the classifier is a L2 regularized logistic regression
classifier [https://pypi.python.org/pypi/rlr]. If you want to use
a different classifier, you can overwrite this attribute with your
custom object. Your classifier object must be have fit and
predict_proba methods, like sklearn models [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html].

from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()

	
thresholdBlocks(blocks, recall_weight=1.5)

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks
and matchBlocks. This methods require you to create blocks of
records. See the documentation for the matchBlocks method
for how to construct blocks.
.. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

	Parameters:	
	blocks (list) – See `matchBlocks`

	recall_weight (float) – Sets the tradeoff between precision and
recall. I.e. if you care twice as much
about recall as you do precision, set
recall_weight to 2.

	
writeSettings(file_obj[, index=False])

	Write a settings file that contains the data model and predicates
to a file object.

	Parameters:	
	file_obj (file) – File object.

	bool (index) – Should the indexes of index predicates be
saved. You will probably only want to call
this after indexing all of your records.

with open('my_learned_settings', 'wb') as f:
 deduper.writeSettings(f, indexes=True)

	
loaded_indices

	Indicates whether indices for index predicates was loaded from a
settings file.

Gazetteer Objects

Class for active learning gazetteer matching.

Gazetteer matching is for matching a messy data set against a
‘canonical dataset’, i.e. one that does not have any duplicates. This
class is useful for such tasks as matching messy addresses against
a clean list.

The interface is the same as for RecordLink objects except for a
couple of methods.

	
class Gazetteer

	
	
index(data)

	Add records to the index of records to match against. If a record in
canonical_data has the same key as a previously indexed record, the
old record will be replaced.

	Parameters:	data (dict) – a dictionary of records where the keys
are record_ids and the values are
dictionaries with the keys being
field_names

	
unindex(data) :

	Remove records from the index of records to match against.

	Parameters:	data (dict) – a dictionary of records where the keys
are record_ids and the values are
dictionaries with the keys being
field_names

	
match(messy_data, threshold=0.5, n_matches=1)

	Identifies pairs of records that could refer to the same entity,
returns tuples containing tuples of possible matches, with a
confidence score for each match. The record_ids within each tuple
should refer to potential matches from a messy data record to
canonical records. The confidence score is the estimated
probability that the records refer to the same entity.

	Parameters:	
	messy_data (dict) – a dictionary of records from a messy
dataset, where the keys are record_ids and
the values are dictionaries with the keys
being field names.

	threshold (float) – a number between 0 and 1 (default is
0.5). We will consider records as
potential duplicates if the predicted
probability of being a duplicate is
above the threshold.

Lowering the number will increase
recall, raising it will increase
precision

	n_matches (int) – the maximum number of possible matches from
canonical_data to return for each record in
messy_data. If set to None all possible
matches above the threshold will be
returned. Defaults to 1

	
threshold(messy_data, recall_weight = 1.5)

	Returns the threshold that maximizes the expected F score, a
weighted average of precision and recall for a sample of data.

	Parameters:	
	messy_data (dict) – a dictionary of records from a messy
dataset, where the keys are record_ids and
the values are dictionaries with the keys
being field names.

	recall_weight (float) – Sets the tradeoff between precision and
recall. I.e. if you care twice as much
about recall as you do precision, set
recall_weight to 2.

	
matchBlocks(blocks, threshold=.5, n_matches=1)

	Partitions blocked data and returns a list of clusters, where each
cluster is a tuple of record ids

	Parameters:	
	blocks (list) – Sequence of records blocks. Each record block
is a tuple containing two sequences of records,
the records from the messy data set and the
records from the canonical dataset. Within each
block there should be at least one record from
each datasets. Along with each record, there
should also be information on the blocks that
cover that record.

For example, if we have two records from a
messy dataset one record from a canonical dataset:

Messy
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})

Canonical
(3, {'name' : 'Pat', 'address' : '123 Main'})

and two predicates: “Whole name” and “Whole address”.
These predicates will produce the following blocks:

Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

Block 2 (Whole name)
(2, {'name' : 'Sam', 'address' : '123 Main'})

Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

So, the blocks you feed to matchBlocks should look
like this,

blocks =((
 [(1, {'name' : 'Pat', 'address' : '123 Main'}, set([]))],
 [(3, {'name' : 'Pat', 'address' : '123 Main'}, set([])]
),
 (
 [(1, {'name' : 'Pat', 'address' : '123 Main'}, set([1]),
 ((2, {'name' : 'Sam', 'address' : '123 Main'}, set([])],
 [((3, {'name' : 'Pat', 'address' : '123 Main'}, set([1])]

)
)
linker.matchBlocks(blocks)

	threshold (float) – Number between 0 and 1 (default is .5). We
will only consider as duplicates record
pairs as duplicates if their estimated
duplicate likelihood is greater than the
threshold.

Lowering the number will increase recall,
raising it will increase precision.

	n_matches (int) – the maximum number of possible matches from
canonical_data to return for each record in
messy_data. If set to None all possible
matches above the threshold will be
returned. Defaults to 1

clustered_dupes = deduper.matchBlocks(blocked_data, threshold)

	
uncertainPairs()

	Returns a list of pairs of records from the sample of record pairs
tuples that Dedupe is most curious to have labeled.

This method is mainly useful for building a user interface for training
a matching model.

> pair = deduper.uncertainPairs()
> print pair
[({'name' : 'Georgie Porgie'}, {'name' : 'Georgette Porgette'})]

	
markPairs(labeled_examples)

	Add users labeled pairs of records to training data and update the
matching model

This method is useful for building a user interface for training a
matching model or for adding training data from an existing source.

	Parameters:	labeled_examples (dict) – a dictionary with two keys,
match and distinct the
values are lists that can contain
pairs of records.

labeled_examples = {'match' : [],
 'distinct' : [({'name' : 'Georgie Porgie'},
 {'name' : 'Georgette Porgette'})]
 }
deduper.markPairs(labeled_examples)

	
train([recall=0.95[, index_predicates=True]])

	Learn final pairwise classifier and blocking rules. Requires that
adequate training data has been already been provided.

	Parameters:	
	recall (float) – The proportion of true dupe pairs in our
training data that that we the learned blocks
must cover. If we lower the recall, there will
be pairs of true dupes that we will never
directly compare.

recall should be a float between 0.0 and 1.0,
the default is 0.95

	index_predicates (bool) – Should dedupe consider predicates
that rely upon indexing the
data. Index predicates can be slower
and take susbstantial memory.

Defaults to True.

deduper.train()

	
writeTraining(file_obj)

	Write json data that contains labeled examples to a file object.

	Parameters:	file_obj (file) – File object.

with open('./my_training.json', 'w') as f:
 deduper.writeTraining(f)

	
readTraining(training_file)

	Read training from previously saved training data file object

	Parameters:	training_file (file) – File object containing training data

with open('./my_training.json') as f:
 deduper.readTraining(f)

	
cleanupTraining()

	Delete data we used for training.

data_sample, training_pairs, training_data, and
activeLearner can be very large objects. When you are done
training you may want to free up the memory they use.

deduper.cleanupTraining()

	
classifier

	By default, the classifier is a L2 regularized logistic regression
classifier [https://pypi.python.org/pypi/rlr]. If you want to use
a different classifier, you can overwrite this attribute with your
custom object. Your classifier object must be have fit and
predict_proba methods, like sklearn models [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html].

from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()

	
thresholdBlocks(blocks, recall_weight=1.5)

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks
and matchBlocks. This methods require you to create blocks of
records. See the documentation for the matchBlocks method
for how to construct blocks.
.. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

	Parameters:	
	blocks (list) – See `matchBlocks`

	recall_weight (float) – Sets the tradeoff between precision and
recall. I.e. if you care twice as much
about recall as you do precision, set
recall_weight to 2.

	
writeSettings(file_obj[, index=False])

	Write a settings file that contains the data model and predicates
to a file object.

	Parameters:	
	file_obj (file) – File object.

	bool (index) – Should the indexes of index predicates be
saved. You will probably only want to call
this after indexing all of your records.

with open('my_learned_settings', 'wb') as f:
 deduper.writeSettings(f, indexes=True)

	
loaded_indices

	Indicates whether indices for index predicates was loaded from a
settings file.

StaticGazetteer Objects

Class for gazetter matching using saved settings. If you have already
trained a gazetteer instance, you can load the saved settings with
StaticGazetteer.

This class has the same interface as StaticRecordLink except for a
couple of methods.

	
class StaticGazetteer

	
	
index(data)

	Add records to the index of records to match against. If a record in
canonical_data has the same key as a previously indexed record, the
old record will be replaced.

	Parameters:	data (dict) – a dictionary of records where the keys
are record_ids and the values are
dictionaries with the keys being
field_names

	
unindex(data) :

	Remove records from the index of records to match against.

	Parameters:	data (dict) – a dictionary of records where the keys
are record_ids and the values are
dictionaries with the keys being
field_names

	
match(messy_data, threshold=0.5, n_matches=1)

	Identifies pairs of records that could refer to the same entity,
returns tuples containing tuples of possible matches, with a
confidence score for each match. The record_ids within each tuple
should refer to potential matches from a messy data record to
canonical records. The confidence score is the estimated
probability that the records refer to the same entity.

	Parameters:	
	messy_data (dict) – a dictionary of records from a messy
dataset, where the keys are record_ids and
the values are dictionaries with the keys
being field names.

	threshold (float) – a number between 0 and 1 (default is
0.5). We will consider records as
potential duplicates if the predicted
probability of being a duplicate is
above the threshold.

Lowering the number will increase
recall, raising it will increase
precision

	n_matches (int) – the maximum number of possible matches from
canonical_data to return for each record in
messy_data. If set to None all possible
matches above the threshold will be
returned. Defaults to 1

	
threshold(messy_data, recall_weight = 1.5)

	Returns the threshold that maximizes the expected F score, a
weighted average of precision and recall for a sample of data.

	Parameters:	
	messy_data (dict) – a dictionary of records from a messy
dataset, where the keys are record_ids and
the values are dictionaries with the keys
being field names.

	recall_weight (float) – Sets the tradeoff between precision and
recall. I.e. if you care twice as much
about recall as you do precision, set
recall_weight to 2.

	
matchBlocks(blocks, threshold=.5, n_matches=1)

	Partitions blocked data and returns a list of clusters, where each
cluster is a tuple of record ids

	Parameters:	
	blocks (list) – Sequence of records blocks. Each record block
is a tuple containing two sequences of records,
the records from the messy data set and the
records from the canonical dataset. Within each
block there should be at least one record from
each datasets. Along with each record, there
should also be information on the blocks that
cover that record.

For example, if we have two records from a
messy dataset one record from a canonical dataset:

Messy
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})

Canonical
(3, {'name' : 'Pat', 'address' : '123 Main'})

and two predicates: “Whole name” and “Whole address”.
These predicates will produce the following blocks:

Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

Block 2 (Whole name)
(2, {'name' : 'Sam', 'address' : '123 Main'})

Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

So, the blocks you feed to matchBlocks should look
like this,

blocks =((
 [(1, {'name' : 'Pat', 'address' : '123 Main'}, set([]))],
 [(3, {'name' : 'Pat', 'address' : '123 Main'}, set([])]
),
 (
 [(1, {'name' : 'Pat', 'address' : '123 Main'}, set([1]),
 ((2, {'name' : 'Sam', 'address' : '123 Main'}, set([])],
 [((3, {'name' : 'Pat', 'address' : '123 Main'}, set([1])]

)
)
linker.matchBlocks(blocks)

	threshold (float) – Number between 0 and 1 (default is .5). We
will only consider as duplicates record
pairs as duplicates if their estimated
duplicate likelihood is greater than the
threshold.

Lowering the number will increase recall,
raising it will increase precision.

	n_matches (int) – the maximum number of possible matches from
canonical_data to return for each record in
messy_data. If set to None all possible
matches above the threshold will be
returned. Defaults to 1

clustered_dupes = deduper.matchBlocks(blocked_data, threshold)

	
classifier

	By default, the classifier is a L2 regularized logistic regression
classifier [https://pypi.python.org/pypi/rlr]. If you want to use
a different classifier, you can overwrite this attribute with your
custom object. Your classifier object must be have fit and
predict_proba methods, like sklearn models [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html].

from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()

	
thresholdBlocks(blocks, recall_weight=1.5)

	Returns the threshold that maximizes the expected F score, a weighted
average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks
and matchBlocks. This methods require you to create blocks of
records. See the documentation for the matchBlocks method
for how to construct blocks.
.. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

	Parameters:	
	blocks (list) – See `matchBlocks`

	recall_weight (float) – Sets the tradeoff between precision and
recall. I.e. if you care twice as much
about recall as you do precision, set
recall_weight to 2.

	
writeSettings(file_obj[, index=False])

	Write a settings file that contains the data model and predicates
to a file object.

	Parameters:	
	file_obj (file) – File object.

	bool (index) – Should the indexes of index predicates be
saved. You will probably only want to call
this after indexing all of your records.

with open('my_learned_settings', 'wb') as f:
 deduper.writeSettings(f, indexes=True)

	
loaded_indices

	Indicates whether indices for index predicates was loaded from a
settings file.

Convenience Functions

	
consoleLabel(matcher)

	Train a matcher instance (Dedupe or RecordLink) from the command line.
Example

> deduper = dedupe.Dedupe(variables)
> deduper.sample(data)
> dedupe.consoleLabel(deduper)

	
trainingDataLink(data_1, data_2, common_key[, training_size])

	Construct training data for consumption by the
RecordLink.markPairs() from already linked datasets.

	Parameters:	
	data_1 (dict) – a dictionary of records from first dataset,
where the keys are record_ids and the
values are dictionaries with the keys being
field names.

	data_2 (dict) – a dictionary of records from second dataset,
same form as data_1

	common_key (str) – the name of the record field that uniquely
identifies a match

	training_size (int) – the rough limit of the number of training examples,
defaults to 50000

Warning

Every match must be identified by the sharing of a common key. This
function assumes that if two records do not share a common key then they
are distinct records.

	
trainingDataDedupe(data, common_key[, training_size])

	Construct training data for consumption by the
Dedupe.markPairs() from an already deduplicated dataset.

	Parameters:	
	data (dict) – a dictionary of records, where the keys are
record_ids and the values are dictionaries with
the keys being field names

	common_key (str) – the name of the record field that uniquely
identifies a match

	training_size (int) – the rough limit of the number of training examples,
defaults to 50000

Warning

Every match must be identified by the sharing of a common key. This
function assumes that if two records do not share a common key then
they are distinct records.

	
canonicalize(record_cluster)

	Constructs a canonical representation of a duplicate cluster by finding canonical values for each field

	Parameters:	record_cluster (list) – A list of records within a duplicate cluster, where the records are dictionaries with field
names as keys and field values as values

Variable definitions

Core Variables

A variable definition describes the records that you want to match. It is
a dictionary where the keys are the fields and the values are the
field specification

variables = [
 {'field' : 'Site name', 'type': 'String'},
 {'field' : 'Address', 'type': 'String'},
 {'field' : 'Zip', 'type': 'String', 'has missing':True},
 {'field' : 'Phone', 'type': 'String', 'has missing':True}
]

String Types

A ‘String’ type variable must declare the name of the record field to
compare a ‘String’ type declaration ex.
{'field' : 'Address', type:'String'} The string type expects fields to be of class string.

String types are compared using affine gap string
distance [http://en.wikipedia.org/wiki/Gap_penalty#Affine].

ShortString Types

Short strings are just like String types except that dedupe will not
try to learn a canopy blocking rule for these fields, which can speed
up the training phase considerably. Zip codes and city names are good
candidates for this type. If in doubt, just use ‘String.’

{'field': 'Zipcode', type: 'ShortString'}

Text Types

If you want to compare fields comparing long blocks of text, like
product descriptions or article abstracts you should use this
type. Text types fields are compared using the cosine similarity
metric [http://en.wikipedia.org/wiki/Vector_space_model].

Basically, this is a measurement of the amount of words that two
documents have in common. This measure can be made more useful the
overlap of rare words counts more than the overlap of common words. If
provide a sequence of example fields than (a corpus), dedupe will
learn these weights for you.

{'field': 'Product description', 'type' : 'Text',
 'corpus' : ['this product is great',
 'this product is great and blue']}
 }

If you don’t want to adjust the measure to your data, just leave ‘corpus’
out of the variable definition.

{'field' : 'Product description', 'type' : 'Text'}

Custom Types

A ‘Custom’ type field must have specify the field it wants to compare,
a ‘type’ declaration of ‘Custom’, and a ‘comparator’ declaration. The
comparator must be a function that can take in two field values and
return a number.

Example custom comparator:

def sameOrNotComparator(field_1, field_2) :
 if field_1 and field_2 :
 if field_1 == field_2 :
 return 0
 else:
 return 1

variable definition:

{'field' : 'Zip', 'type': 'Custom',
 'comparator' : sameOrNotComparator}

LatLong

A ‘LatLong’ type field must have as the name of a field and a ‘type’
declaration of custom. LatLong fields are compared using the
Haversine Formula [http://en.wikipedia.org/wiki/Haversine_formula].
A ‘LatLong’ type field must consist of tuples of floats corresponding
to a latitude and a longitude.

{'field' : 'Location', 'type': 'LatLong'}}

Set

A ‘Set’ type field is for comparing lists of elements, like keywords
or client names. Set types are very similar to
Text Types. They use the same comparison function and
you can also let dedupe learn which terms are common or rare by
providing a corpus. Within a record, a Set types field have to be
hashable sequences like tuples or frozensets.

{'field' : 'Co-authors', 'type': 'Set',
 'corpus' : [('steve edwards'),
 ('steve edwards', 'steve jobs')]}
 }

or

{'field' : 'Co-authors', 'type': 'Set'}
 }

Interaction

An interaction field multiplies the values of the multiple variables.
An interaction variable is created with ‘type’ declaration of
‘Interaction’ and an ‘interaction variables’ declaration.

The ‘interaction variables’ must be a sequence of ‘variable names’ of
other fields you have defined in your variable definition.

Interactions [http://en.wikipedia.org/wiki/Interaction_%28statistics%29]
are good when the effect of two predictors is not simply additive.

[{'field': 'Name', 'variable name': 'name', 'type': 'String'},
 {'field': 'Zip', 'variable name': 'zip', 'type': 'Custom',
 'comparator' : sameOrNotComparator},
 {'type': 'Interaction',
 'interaction variables': ['name', 'zip']}]

Exact

‘Exact’ variables measure whether two fields are exactly the same or not.

{'field' : 'city', 'type': 'Exact'}}

Exists

‘Exists’ variables measure whether both, one, or neither of the fields
are defined. This can be useful if the presence or absence of a field tells
you something about meaningful about the record.

{'field' : 'first_name', 'type': 'Exists'}

Categorical

Categorical variables are useful when you are dealing with qualitatively
different types of things. For example, you may have data on businesses
and you find that taxi cab businesses tend to have very similar names
but law firms don’t. Categorical variables would let you indicate
whether two records are both taxi companies, both law firms, or one of
each.

Dedupe would represents these three possibilities using two dummy
variables:

taxi-taxi 0 0
lawyer-lawyer 1 0
taxi-lawyer 0 1

A categorical field declaration must include a list of all the different
strings that you want to treat as different categories.

So if you data looks like this

'Name' 'Business Type'
AAA Taxi taxi
AA1 Taxi taxi
Hindelbert Esq lawyer

You would create a definition like:

{'field' : 'Business Type', 'type': 'Categorical',
'categories' : ['taxi', 'lawyer']}

Price

Price variables are useful for comparing positive, nonzero numbers
like prices. The values of ‘Price’ field must be a positive float. If
the value is 0 or negative, then an exception will be raised.

{'field' : 'cost', 'type': 'Price'}

Optional Variables

Address Type

An ‘Address’ variable should be used for United States addresses. It
uses the usaddress [https://usaddress.readthedocs.io/en/latest/]
package to split apart an address string into components like address
number, street name, and street type and compares component to component.

{'field' : 'address', 'type' : 'Address'}

Install the dedupe-variable-address [https://pypi.python.org/pypi/dedupe-variable-address] package for Address Type.

Name Type

A ‘Name’ variable should be used for a field that contains American
names, corporations and households. It uses the probablepeople [https://probablepeople.readthedocs.io/en/latest/] package to split
apart an name string into components like give name, surname,
generational suffix, for people names, and abbreviation, company type,
and legal form for corporations.

{'field' : 'name', 'type' : 'Name'}

Install the dedupe-variable-name [https://pypi.python.org/pypi/dedupe-variable-name] package for Name Type.

Fuzzy Category

A ‘FuzzyCategorical’ variable should be used for when you for
categorical data that has variations. Occupations are example, where
the you may have Attorney, Counsel, and Lawyer. For this variable
type, you need to supply a corpus of records that contain your focal
record and other field types. This corpus should either be all the
data you are trying to link or a representative sample.

{'field' : 'occupation', 'type' : 'FuzzyCategorical',
 'corpus' : [{'name' : 'Jim Doe', 'occupation' : 'Attorney'},
 {'name' : 'Jim Doe', 'occupation' : 'Lawyer'}]}

Install the dedupe-variable-fuzzycategory [https://pypi.python.org/pypi/dedupe-variable-fuzzycategory] package for the FuzzyCategorical Type.

Missing Data

If the value of field is missing, that missing value should be represented as
a None

data = [{'Name' : 'AA Taxi', 'Phone' : '773.555.1124'},
 {'Name' : 'AA Taxi', 'Phone' : None},
 {'Name' : None, 'Phone' : '773-555-1123'}]

If you want to model this missing data for a field, you can set 'has
missing' : True in the variable definition. This creates a new,
additional field representing whether the data was present or not and
zeros out the missing data.

If there is missing data, but you did not declare 'has
missing' : True then the missing data will simply be zeroed out and
no field will be created to account for missing data.

This approach is called ‘response augmented data’ and is described in
Benjamin Marlin’s thesis “Missing Data Problems in Machine Learning” [http://people.cs.umass.edu/~marlin/research/phd_thesis/marlin-phd-thesis.pdf]. Basically,
this approach says that, even without looking at the value of the
field comparisons, the pattern of observed and missing responses will
affect the probability that a pair of records are a match.

This approach makes a few assumptions that are usually not completely true:

	Whether a field is missing data is not associated with any other
field missing data

	That the weighting of the observed differences in field A should be
the same regardless of whether field B is missing.

If you define an an interaction with a field that you declared to have
missing data, then has missing : True will also be set for the
Interaction field.

Longer example of a variable definition:

variables = [{'field' : 'name', 'variable name' : 'name', 'type' : 'String'},
 {'field' : 'address', 'type' : 'String'},
 {'field' : 'city', variable name' : 'city', 'type' : 'String'},
 {'field' : 'zip', 'type' : 'Custom', 'comparator' : sameOrNotComparator},
 {field' : 'cuisine', 'type' : 'String', 'has missing': True}
 {'type' : 'Interaction', 'interaction variables' : ['name', 'city']}
]

Multiple Variables comparing same field

It is possible to define multiple variables that all compare the same
variable.

For example

variables = [{'field' : 'name', 'type' : 'String'},
 {'field' : 'name', 'type' : 'Text'}]

Will create two variables that both compare the ‘name’ field but
in different ways.

Optional Edit Distance

For String, ShortString, Address, and Name fields, you can choose to
use the a conditional random field distance measure for strings. This
measure can give you more accurate results but is much slower than the
default edit distance.

{'field' : 'name', 'type' : 'String', 'crf' : True}

Mac OS X Install Notes

Apple’s implementation of BLAS [http://en.wikipedia.org/wiki/BLAS]
does not support using BLAS calls on both sides of a fork [http://mail.scipy.org/pipermail/numpy-discussion/2012-August/063589.html].

The upshot of this is that you can’t do parallel processing with numpy
(which uses BLAS).

One way to get around this is to compile NumPy against a different
implementation of BLAS such as
OpenBLAS [https://github.com/xianyi/OpenBLAS]. Here’s how you might
go about that:

Install OpenBlas with Homebrew Science

You can install OpenBlas from with Homebrew Science.

$ brew install homebrew/science/openblas

Clone and build NumPy

$ git clone git://github.com/numpy/numpy.git numpy
$ cd numpy
$ pip uninstall numpy (if it is already installed)
$ cp site.cfg.example site.cfg

Edit site.cfg and uncomment/update the code to match below:

[DEFAULT]
library_dirs = /usr/local/opt/openblas/lib
include_dirs = /usr/local/opt/openblas/include

[atlas]
atlas_libs = openblas
libraries = openblas

[openblas]
libraries = openblas
library_dirs = /usr/local/opt/openblas/lib
include_dirs = /usr/local/opt/openblas/include

You may need to change the library_dirs and include_dirs paths
to match where you installed OpenBlas (see
http://stackoverflow.com/a/14391693/1907889 for details).

Then install with:

python setup.py build && python setup.py install

Then reinstall Dedupe:

pip uninstall Dedupe
python setup.py install

How it works

	Matching Records

	Making Smart Comparisons

	Grouping Duplicates

	Choosing a Good Threshold

	Special Cases

Problems with real-world data

Journalists, academics, and businesses work hard to get big masses of
data to learn about what people or organizations are doing.
Unfortunately, once we get the data, we often can’t answer our questions
because we can’t tell who is who.

In much real-world data, we do not have a way of absolutely deciding
whether two records, say John Smith and J. Smith are referring
to the same person. If these were records of campaign contribution data,
did a John Smith give two donations or did John Smith and maybe
Jane Smith give one contribution apiece?

People are pretty good at making these calls, if they have enough
information. For example, I would be pretty confident that the following
two records are the about the same person.

first name | last name | address | phone |
--
bob | roberts | 1600 pennsylvania ave. | 555-0123 |
Robert | Roberts | 1600 Pensylvannia Avenue | |

If we have to decide which records in our data are about the same person
or organization, then we could just go through by hand, compare every
record, and decide which records are about the same entity.

This is very, very boring and can takes a long time. Dedupe is a
software library that can make these decisions about whether records are
about the same thing about as good as a person can, but quickly.

Matching Records

If you look at the following two records, you might think it’s pretty
clear that they are about the same person.

first name | last name | address | phone |
--
bob | roberts | 1600 pennsylvania ave. | 555-0123 |
Robert | Roberts | 1600 Pensylvannia Avenue | |

However, I bet it would be pretty hard for you to explicitly write down
all the reasons why you think these records are about the same Mr.
Roberts.

Record similarity

One way that people have approached this problem is by saying that
records that are more similar are more likely to be duplicates. That’s a
good first step, but then we have to precisely define what we mean for
two records to be similar.

The default way that we do this in Dedupe is to use what’s called a
string metric. A string metric is an way of taking two strings and
returning a number that is low if the strings are similar and high if
they are dissimilar. One famous string metric is called the Hamming
distance. It counts the number of substitutions that must be made to
turn one string into another. For example, roberts and Roberts
would have Hamming distance of 1 because we have to substitute r for
R in order to turn roberts into Roberts.

There are lots of different string metrics, and we actually use a metric
called the Affine Gap Distance [https://en.wikipedia.org/wiki/Gap_penalty#Affine], which is a
variation on the Hamming distance.

Record by record or field by field

When we are calculating whether two records are similar we could treat
each record as if it was a long string.

record_distance = string_distance('bob roberts 1600 pennsylvania ave. 555-0123',
 'Robert Roberts 1600 Pensylvannia Avenue')

Alternately, we could compare field by field

record_distance = (string_distance('bob', 'Robert')
 + string_distance('roberts', 'Roberts')
 + string_distance('1600 pennsylvania ave.', '1600 Pensylvannia Avenue')
 + string_distance('555-0123', ''))

The major advantage of comparing field by field is that we don’t have to
treat each field string distance equally. Maybe we think that its really
important that the last names and addresses are similar but it’s not as
important that first name and phone numbers are close. We can express
that importance with numeric weights, i.e.

record_distance = (0.5 * string_distance('bob', 'Robert')
 + 2.0 * string_distance('roberts', 'Roberts')
 + 2.0 * string_distance('1600 pennsylvania ave.', '1600 Pensylvannia Avenue')
 + 0.5 * string_distance('555-0123', ''))

Setting weights and making decisions

Say we set our record_distance to be this weighted sum of field
distances, just as we had above. Let’s say we calculated the
record_distance and we found that it was the beautiful number 8.

That number, by itself, is not that helpful. Ultimately, we are trying
to decide whether a pair of records are duplicates, and I’m not sure
what decision I should make if I see an 8. Does an 8 mean that the pair
of records are really similar or really far apart, likely or unlikely to
be duplicates. We’d like to define the record distances so that we can
look at the number and know whether to decide whether it’s a duplicate.

Also, I really would rather not have to set the weights by hand every
time. It can be very tricky to know which fields are going to matter and
even if I know that some fields are more important I’m not sure how to
quantify it (is it 2 times more important or 1.3 times)?

Fortunately, we can solve both problems with a technique called
regularized logistic regression. If we supply pairs of records that we
label as either being duplicates or distinct, then Dedupe will learn a
set of weights such that the record distance can easily be transformed
into our best estimate of the probability that a pair of records are
duplicates.

Once we have learned these good weights, we want to use them to find
which records are duplicates. But turns out that doing this the naive
way will usually not work, and we’ll have to do something
smarter.

Active learning

In order to learn those weights, Dedupe needs example pairs with labels.
Most of the time, we will need people to supply those labels.

But the whole point of Dedupe is to save people’s time, and that
includes making good use of your labeling time so we use an approach
called Active Learning.

Basically, Dedupe keeps track of bunch of unlabeled pairs and its
currently learned weights. At any time, there will be record Dedupe will
believe have a near a 50/50 chance of being a duplicate or distinct.
Dedupe will learn more from seeing the label of this most uncertain of
pairs then getting a label for any other record.

Dedupe picks this most uncertain pair of records about and asks the user
to decide. Once it gets this label, it relearns the weights. With these
new weights, there will now be a different record pair that Dedupe is
most uncertain about, and that’s the next one the user will be asked to
label.

Other field distances

We have implemented a number of field distance measures. See the
details about variables.

Making Smart Comparisons

Say we have magic function that takes in a pair of records and always
returns a False if a pair of records are distinct and True if a
pair of records refer to the same person or organization.

Let’s say that this function was pretty slow. It always took one second
to return.

How long would it take to duplicate a thousand records?

Within a dataset of thousand records, there are \(\frac{1{,}000
\times 999}{2} = 499{,}500\) unique pairs of records. If we
compared all of them using our magic function it would take six days.

But, one second is a long time, let’s say we sped it up so that we
can make 10,000 comparisons per second. Now we can get through our
thousand-record-long dataset in less than a minute.

Feeling good about our super-fast comparison function, let’s take on a
dataset of 100,000 records. Now there are
\(\frac{100{,}000 \times 99{,}999}{2} = 4{,}999{,}950{,}000\) unique possible
pairs. If we compare all of them with our super-fast comparison function,
it will take six days again.

If we want to work with moderately sized data, we have to find a way of
making fewer comparisons.

Duplicates are rare

In real world data, nearly all possible pairs of records are not
duplicates.

In this four-record example below, only two pairs of records are
duplicates–(1, 2) and (3, 4), while there are four unique
pairs of records that are not duplicates–(1,3), (1,4), (2,3), and (2,4).
Typically, as the size of the dataset grows, the fraction of pairs of records
that are duplicates gets very small very quickly.

	first name
	last name
	address
	phone
	record_id

	bob
	roberts
	1600 pennsylvania ave.
	555-0123
	1

	Robert
	Roberts
	1600 Pensylvannia Avenue
	
	2

	steve
	Jones
	123 Cowabunga Lane
	555-0000
	3

	Stephen
	Janes
	123 Cawabunga Ln
	444-555-0000
	4

If we could only compare records that were true duplicates, we wouldn’t
run into the explosion of comparisons. Of course, if we already knew where
the true duplicates were, we wouldn’t need to compare any individual
records. Unfortunately we don’t, but we do quite well if just compare
records that are somewhat similar.

Blocking

Duplicate records almost always share something in common. If we
define groups of data that share something and only compare the records
in that group, or block, then we can dramatically reduce the number of
comparisons we will make. If we define these blocks well, then we will make
very few comparisons and still have confidence that will compare records
that truly are duplicates.

This task is called blocking, and we approach it in two ways: predicate
blocks and canopies.

Predicate blocks

A predicate block is a bundle of records that all share a feature – a
feature produced by a simple function called a predicate.

Predicate functions take in a record field, and output a set of features
for that field. These features could be “the first 3 characters of the
field,” “every word in the field,” and so on. Records that share the
same feature become part of a block.

Let’s take an example. Let’s use a “first 3 character” predicate on
the address field below..

	first name
	last name
	address
	phone
	record_id

	bob
	roberts
	1600 pennsylvania ave.
	555-0123
	1

	Robert
	Roberts
	1600 Pensylvannia Avenue
	
	2

	steve
	Jones
	123 Cowabunga Lane
	555-0000
	3

	Stephen
	Janes
	123 Cawabunga Ln
	444-555-0000
	4

That leaves us with two blocks - The ‘160’ block, which contains records
1 and 2, and the ‘123’ block, which contains records 3 and 4.

{'160' : (1,2) # tuple of record_ids
 '123' : (3,4)
 }

Again, we’re applying the “first three words” predicate function to the
address field in our data, the function outputs the following features –
160, 160, 123, 123 – and then we group together the records that have
identical features into “blocks”.

Others simple predicates Dedupe uses include:

	whole field

	token field

	common integer

	same three char start

	same five char start

	same seven char start

	near integers

	common four gram

	common six gram

Index Blocks

Dedupe also uses another way of producing blocks from searching and
index. First, we create a special data structure, like an inverted
index [http://en.wikipedia.org/wiki/Inverted_index], that lets us
quickly find records similar to target records. We populate the index
with all the unique values that appear in field.

When blocking, for each record we search the index for values similar to
the record’s field. We block together records that share at least one
common search result.

Index predicates require building an index from all the unique values
in a field. This can take substantial time and memory. Index
predicates are also usually slower than predicate blocking.

Combining blocking rules

If it’s good to put define blocks of records that share the same ‘city’
field, it might be even better to block records that share both the
‘city’ field and the ‘zip code’ field. Dedupe tries these cross-field
blocks. These combinations blocks are called disjunctive blocks.

Learning good blocking rules for given data

Dedupe comes with a long set of predicates, and when these are
combined Dedupe can have hundreds of possible blocking rules to choose
from. We will want to find a small set of these rules that covers
every labeled duplicated pair but minimizes the total number pairs
dedupe will have to compare.

While we approach this problem by using greedy algorithms, particularly
Chvatal’s Greedy Set-Cover
algorithm [http://www.cs.ucr.edu/~neal/Papers/Young08SetCover.pdf].

Grouping Duplicates

Once we have calculated the probability that pairs of record are
duplicates or not, we still have a kind of thorny problem because it’s
not just pairs of records that can be duplicates. Three, four, thousands
of records could all refer to the same entity (person, organization, ice
cream flavor, etc.,) but we only have pairwise measures.

Let’s say we have measured the following pairwise probabilities between
records A, B, and C.

A -- 0.6 -- B -- 0.6 -- C

The probability that A and B are duplicates is 60%, the probability that
B and C are duplicates is 60%, but what is the probability that A and C
are duplicates?

Let’s say that everything is going perfectly and we can say there’s a
36% probability that A and C are duplicates. We’d probably want to say
that A and C should not be considered duplicates.

Okay, then should we say that A and B are a duplicate pair and C is a
distinct record or that A is the distinct record and that B and C are
duplicates?

Well... this is a thorny problem, and we tried solving it a few
different ways. In the end, we found that hierarchical clustering with
centroid linkage gave us the best results. What this algorithm does is
say that all points within some distance of centroid are part of the
same group. In this example, B would be the centroid - and A, B, C and
would all be put in the same group.

Unfortunately, a more principled answer does not exist because the
estimated pairwise probabilities are not transitive.

Clustering the groups depends on us setting a threshold for group
membership – the distance of the points to the centroid. Depending on how
we choose that threshold, we’ll get very different groups, and we will
want to choose this threshold wisely.

In recent years, there has been some very exciting research that
solves the problem of turning pairwise distances into clusters, by
avoiding making pairwise comparisons altogether. Unfortunately, these
developments are not compatible with Dedupe’s pairwise approach. See,
Michael Wick, et.al, 2012. “A Discriminative Hierarchical Model for Fast Coreference at Large Scale” [http://people.cs.umass.edu/~sameer/files/hierar-coref-acl12.pdf]
and Rebecca C. Steorts, et. al., 2013. “A Bayesian Approach to Graphical Record Linkage and De-duplication” [http://arxiv.org/abs/1312.4645].

Choosing a Good Threshold

Dedupe can predict the probability that a pair of records are
duplicates. So, how should we decide that a pair of records really are
duplicates?

To answer this question we need to know something about Precision and
Recall. Why don’t you check out the Wikipedia
page [http://en.wikipedia.org/wiki/Precision_and_recall] and come
back here.

There’s always a trade-off between precision and recall. That’s okay. As
long as we know how much we care about precision vs. recall, we can
define an F-score [http://en.wikipedia.org/wiki/F1_score] that will
let us find a threshold for deciding when records are duplicates that
is optimal for our priorities.

Typically, the way that we find that threshold is by looking at the true
precision and recall of some data where we know their true labels -
where we know the real duplicates. However, we will only get a good
threshold if the labeled examples are representative of the data we are
trying to classify.

So here’s the problem - the labeled examples that we make with Dedupe
are not at all representative, and that’s by design. In the active
learning step, we are not trying to find the most representative data
examples. We’re trying to find the ones that will teach us the most.

The approach we take here is to take a random sample of blocked data,
and then calculate the pairwise probability that records will be
duplicates within each block. From these probabilities we can calculate
the expected number of duplicates and distinct pairs, so we can
calculate the expected precision and recall.

Special Cases

The process we have been describing is for the most general case–when
you have a dataset where an arbitrary number of records can all refer to
the same entity.

There are certain special cases where we can make more assumptions about
how records can be linked, which if true, make the problem much simpler.

One important case we call Record Linkage. Say you have two datasets and
you want to find the records in each dataset that refer to the same
thing. If you can assume that each dataset, individually, is unique,
then this puts a big constraint on how records can match. If this
uniqueness assumption holds, then (A) two records can only refer to the
same entity if they are from different datasets and (B) no other record
can match either of those two records.

Bibliography

	http://research.microsoft.com/apps/pubs/default.aspx?id=153478

	http://cs.anu.edu.au/~Peter.Christen/data-matching-book-2012.html

	http://www.umiacs.umd.edu/~getoor/Tutorials/ER_VLDB2012.pdf

New School

	Steorts, Rebecca C., Rob Hall and Stephen Fienberg. “A Bayesian Approach to Record Linkage and De-duplication” December 2013. http://arxiv.org/abs/1312.4645

Very beautiful work. Records are matched to latent individuals. O(N)
running time. Unsupervised, but everything hinges on tuning
hyperparameters. This work only contemplates categorical variables.

To Read

	Domingos and Domingos Multi-relational record linkage. http://homes.cs.washington.edu/~pedrod/papers/mrdm04.pdf

	An Entity Based Model for Coreference Resolution http://people.cs.umass.edu/~mwick/MikeWeb/Publications_files/wick09entity.pdf

Index

 B
 | C
 | D
 | G
 | I
 | L
 | M
 | R
 | S
 | T
 | U
 | W

B

 	
 	blocker() (Dedupe method)

 	(StaticDedupe method)

C

 	
 	canonicalize() (built-in function)

 	classifier (Dedupe attribute)

 	(Gazetteer attribute)

 	(RecordLink attribute)

 	(StaticDedupe attribute)

 	(StaticGazetteer attribute)

 	(StaticRecordLink attribute)

 	
 	cleanupTraining() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 	consoleLabel() (built-in function)

D

 	
 	Dedupe (built-in class)

G

 	
 	Gazetteer (built-in class)

I

 	
 	index() (Dedupe.blocker method)

 	(Gazetteer method)

 	(StaticDedupe.blocker method)

 	(StaticGazetteer method)

 	
 	index_fields (Dedupe.blocker attribute)

 	(StaticDedupe.blocker attribute)

L

 	
 	loaded_indices (Dedupe attribute)

 	(Gazetteer attribute)

 	(RecordLink attribute)

 	(StaticDedupe attribute)

 	(StaticGazetteer attribute)

 	(StaticRecordLink attribute)

M

 	
 	markPairs() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 	match() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 	(StaticDedupe method)

 	(StaticGazetteer method)

 	(StaticRecordLink method)

 	
 	matchBlocks() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 	(StaticDedupe method)

 	(StaticGazetteer method)

 	(StaticRecordLink method)

R

 	
 	readTraining() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 	
 	RecordLink (built-in class)

S

 	
 	sample() (Dedupe method)

 	(RecordLink method)

 	
 	StaticDedupe (built-in class)

 	StaticGazetteer (built-in class)

 	StaticRecordLink (built-in class)

T

 	
 	threshold() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 	(StaticDedupe method)

 	(StaticGazetteer method)

 	(StaticRecordLink method)

 	thresholdBlocks() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 	(StaticDedupe method)

 	(StaticGazetteer method)

 	(StaticRecordLink method)

 	
 	train() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 	trainingDataDedupe() (built-in function)

 	trainingDataLink() (built-in function)

U

 	
 	uncertainPairs() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

W

 	
 	writeSettings() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 	(StaticDedupe method)

 	(StaticGazetteer method)

 	(StaticRecordLink method)

 	
 	writeTraining() (Dedupe method)

 	(Gazetteer method)

 	(RecordLink method)

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Dedupe 1.6.7

 		API Documentation

 		Dedupe Objects

 		StaticDedupe Objects

 		RecordLink Objects

 		StaticRecordLink Objects

 		Gazetteer Objects

 		StaticGazetteer Objects

 		Convenience Functions

 		Variable definitions

 		Core Variables

 		String Types

 		ShortString Types

 		Text Types

 		Custom Types

 		LatLong

 		Set

 		Interaction

 		Exact

 		Exists

 		Categorical

 		Price

 		Optional Variables

 		Address Type

 		Name Type

 		Fuzzy Category

 		Missing Data

 		Multiple Variables comparing same field

 		Optional Edit Distance

 		Mac OS X Install Notes

 		Install OpenBlas with Homebrew Science

 		Clone and build NumPy

 		How it works

 		Matching Records

 		Record similarity

 		Record by record or field by field

 		Setting weights and making decisions

 		Making Smart Comparisons

 		Duplicates are rare

 		Blocking

 		Combining blocking rules

 		Learning good blocking rules for given data

 		Grouping Duplicates

 		Choosing a Good Threshold

 		Special Cases

 		Bibliography

 		New School

 		To Read

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

