dedupe Documentation

Release 1.6.7

Forest Gregg, Derek Eder, and contributors

Contents

1	Important links	3
2	Tools built with dedupe	5
3	Contents	7
4	Features	43
5	Installation	45
6	Using dedupe	47
7	Errors / Bugs	49
8	Contributing to dedupe	51
9	Citing dedupe	53
10	Indices and tables	55

dedupe is a library that uses machine learning to perform de-duplication and entity resolution quickly on structured data.

dedupe will help you:

- remove duplicate entries from a spreadsheet of names and addresses
- link a list with customer information to another with order history, even without unique customer id's
- take a database of campaign contributions and **figure out which ones were made by the same person**, even if the names were entered slightly differently for each record

dedupe takes in human training data and comes up with the best rules for your dataset to quickly and automatically find similar records, even with very large databases.

Contents 1

2 Contents

CHAPTER 1

Important links

- Documentation: https://dedupe.readthedocs.io/
- Repository: https://github.com/datamade/dedupe
- Issues: https://github.com/datamade/dedupe/issues
- Mailing list: https://groups.google.com/forum/#!forum/open-source-deduplication
- Examples: https://github.com/datamade/dedupe-examples
- IRC channel, #dedupe on irc.freenode.net

CHAPTER 2

Tools built with dedupe

Dedupe.io A full service web service powered by dedupe for de-duplicating and find matches in your messy data. It provides an easy-to-use interface and provides cluster review and automation, as well as advanced record linkage, continuous matching and API integrations. See the product page and the launch blog post.

 $csv dedupe \ Command \ line \ tool \ for \ de-duplicating \ and \ linking \ CSV \ files. \ Read \ about \ it \ on \ Source \ Knight-Mozilla \ OpenNews.$

Contents

API Documentation

Dedupe Objects

Class for active learning deduplication. Use deduplication when you have data that can contain multiple records that can all refer to the same entity.

```
class Dedupe (variable_definition, [data_sample[, [num_cores]])
Initialize a Dedupe object with a field definition
```

Parameters

- **variable_definition** (dict) A variable definition is list of dictionaries describing the variables will be used for training a model.
- num_cores (int) the number of cpus to use for parallel processing, defaults to the number of cpus available on the machine
- data_sample __DEPRECATED__

sample (data[, [sample_size=15000[, blocked_proportion=0.5[, original_length]]])

In order to learn how to deduplicate your records, dedupe needs a sample of your records to train on. This method takes a mixture of random sample of pairs of records and a selection of pairs of records that are much more likely to be duplicates.

Parameters

- data (dict) A dictionary-like object indexed by record ID where the values are dictionaries representing records.
- sample_size (int) Number of record tuples to return. Defaults to 15,000.
- **blocked_proportion** (*float*) The proportion of record pairs to be sampled from similar records, as opposed to randomly selected pairs. Defaults to 0.5.
- **original_length** If *data* is a subsample of all your data, *original_length* should be the size of your complete data. By default, *original_length* defaults to the length of *data*.

```
deduper.sample(data_d, 150000, .5)
```

uncertainPairs()

Returns a list of pairs of records from the sample of record pairs tuples that Dedupe is most curious to have labeled.

This method is mainly useful for building a user interface for training a matching model.

```
> pair = deduper.uncertainPairs()
> print pair
[({'name' : 'Georgie Porgie'}, {'name' : 'Georgette Porgette'})]
```

markPairs (labeled_examples)

Add users labeled pairs of records to training data and update the matching model

This method is useful for building a user interface for training a matching model or for adding training data from an existing source.

Parameters labeled_examples (dict) — a dictionary with two keys, match and distinct the values are lists that can contain pairs of records.

train([recall=0.95[, index_predicates=True]])

Learn final pairwise classifier and blocking rules. Requires that adequate training data has been already been provided.

Parameters

• **recall** (float) – The proportion of true dupe pairs in our training data that that we the learned blocks must cover. If we lower the recall, there will be pairs of true dupes that we will never directly compare.

recall should be a float between 0.0 and 1.0, the default is 0.95

• index_predicates (bool) - Should dedupe consider predicates that rely upon indexing the data. Index predicates can be slower and take substantial memory.

Defaults to True.

```
deduper.train()
```

writeTraining(file_obj)

Write ison data that contains labeled examples to a file object.

Parameters file_obj (file) - File object.

```
with open('./my_training.json', 'w') as f:
    deduper.writeTraining(f)
```

readTraining (training_file)

Read training from previously saved training data file object

Parameters training_file (file) - File object containing training data

```
with open('./my_training.json') as f:
   deduper.readTraining(f)
```

cleanupTraining()

Delete data we used for training.

data_sample, training_pairs, training_data, and activeLearner can be very large objects. When you are done training you may want to free up the memory they use.

```
deduper.cleanupTraining()
```

threshold(data[, recall_weight=1.5])

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of data.

Parameters

- data (dict) a dictionary of records, where the keys are record_ids and the values are dictionaries with the keys being field names
- **recall_weight** (float) sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
> threshold = deduper.threshold(data, recall_weight=2)
> print threshold
0.21
```

```
match(data[, threshold = 0.5[, max\_components = 30000]])
```

Identifies records that all refer to the same entity, returns tuples containing a sequence of record ids and corresponding sequence of confidence score as a float between 0 and 1. The record_ids within each set should refer to the same entity and the confidence score is a measure of our confidence a particular entity belongs in the cluster.

This method should only used for small to moderately sized datasets for larger data, use matchBlocks

Parameters

- data (dict) a dictionary of records, where the keys are record_ids and the values are dictionaries with the keys being field names
- **threshold** (*float*) a number between 0 and 1 (default is 0.5). We will consider records as potential duplicates if the predicted probability of being a duplicate is above the threshold.

Lowering the number will increase recall, raising it will increase precision

• max_components (int) – Dedupe splits records into connected components and then clusters each component. Clustering uses about N^2 memory, where N is the size of the components. Max components sets the maximum size of a component dedupe will try to cluster. If a component is larger than max_components, dedupe will try to split it into smaller components. Defaults to 30K.

```
> duplicates = deduper.match(data, threshold=0.5)
> print duplicates
[((1, 2, 3),
    (0.790,
        0.860,
        0.790)),
    ((4, 5),
        (0.720,
        0.720)),
    ((10, 11),
        (0.899,
        0.899))]
```

blocker.index_fields

A dictionary of the Index Predicates that will used for blocking. The keys are the fields the predicates will operate on.

blocker.index (field_data, field)

Indexes the data from a field for use in a index predicate.

Parameters

- **field data** (set) The unique field values that appear in your data.
- **field** (string) The name of the field

```
for field in deduper.blocker.index_fields :
    field_data = set(record[field] for record in data)
    deduper.index(field_data, field)
```

blocker (data)

Generate the predicates for records. Yields tuples of (predicate, record_id).

Parameters data (list) – A sequence of tuples of (record_id, record_dict). Can often be created by data_dict.items().

```
> data = [(1, {'name' : 'bob'}), (2, {'name' : 'suzanne'})]
> blocked_ids = deduper.blocker(data)
> print list(blocked_ids)
[('foo:1', 1), ..., ('bar:1', 100)]
```

matchBlocks (blocks[, threshold=.5])

Partitions blocked data and returns a list of clusters, where each cluster is a tuple of record ids

Keyword arguments

Parameters

• **blocks** (*list*) – Sequence of records blocks. Each record block is a tuple containing records to compare. Each block should contain two or more records. Along with each record, there should also be information on the blocks that cover that record.

For example, if we have three records:

```
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Sam', 'address' : '123 Main'})
```

and two predicates: "Whole name" and "Whole address". These predicates will produce the following blocks:

```
# Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})

# Block 2 (Whole name)
(3, {'name' : 'Sam', 'address' : '123 Main'})

# Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Sam', 'address' : '123 Main'})
```

So, the blocks you feed to matchBlocks should look like this, after filtering out the singleton block.

Within each block, dedupe will compare every pair of records. This is expensive. Checking to see if two sets intersect is much cheaper, and if the block coverage information for two records does intersect, that means that this pair of records has been compared in a previous block, and dedupe will skip comparing this pair of records again.

• **threshold** (*float*) – Number between 0 and 1 (default is .5). We will only consider as duplicates record pairs as duplicates if their estimated duplicate likelihood is greater than the threshold.

Lowering the number will increase recall, raising it will increase precision.

classifier

By default, the classifier is a L2 regularized logistic regression classifier. If you want to use a different classifier, you can overwrite this attribute with your custom object. Your classifier object must be have *fit* and *predict_proba* methods, like sklearn models.

```
from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()
```

thresholdBlocks (blocks, recall_weight=1.5)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks and matchBlocks. This methods require you to create blocks of records. See the documentation for the matchBlocks method for how to construct blocks. .. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

Parameters

- blocks (list) See `matchBlocks`
- **recall_weight** (float) Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
writeSettings (file_obj[, index=False])
```

Write a settings file that contains the data model and predicates to a file object.

Parameters

- file_obj (file) File object.
- **bool** (index) Should the indexes of index predicates be saved. You will probably only want to call this after indexing all of your records.

```
with open('my_learned_settings', 'wb') as f:
    deduper.writeSettings(f, indexes=True)
```

loaded indices

Indicates whether indices for index predicates was loaded from a settings file.

StaticDedupe Objects

Class for deduplication using saved settings. If you have already trained dedupe, you can load the saved settings with StaticDedupe.

```
class StaticDedupe (settings_file[, num_cores])
```

Initialize a Dedupe object with saved settings

Parameters

- **settings_file** (*file*) A file object containing settings info produced from the <code>Dedupe.writeSettings()</code> of a previous, active Dedupe object.
- num_cores (int) the number of cpus to use for parallel processing, defaults to the number of cpus available on the machine

```
threshold (data | , recall_weight=1.5 |)
```

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of data.

Parameters

- data (dict) a dictionary of records, where the keys are record_ids and the values are dictionaries with the keys being field names
- **recall_weight** (float) sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
> threshold = deduper.threshold(data, recall_weight=2)
> print threshold
0.21
```

```
match(data[, threshold = 0.5[, max\_components = 30000]])
```

Identifies records that all refer to the same entity, returns tuples containing a sequence of record ids and corresponding sequence of confidence score as a float between 0 and 1. The record_ids within each set should refer to the same entity and the confidence score is a measure of our confidence a particular entity belongs in the cluster.

This method should only used for small to moderately sized datasets for larger data, use matchBlocks

Parameters

- data (dict) a dictionary of records, where the keys are record_ids and the values are dictionaries with the keys being field names
- **threshold** (*float*) a number between 0 and 1 (default is 0.5). We will consider records as potential duplicates if the predicted probability of being a duplicate is above the threshold.

Lowering the number will increase recall, raising it will increase precision

• max_components (int) – Dedupe splits records into connected components and then clusters each component. Clustering uses about N^2 memory, where N is the size of the components. Max components sets the maximum size of a component dedupe will try to cluster. If a component is larger than max_components, dedupe will try to split it into smaller components. Defaults to 30K.

```
> duplicates = deduper.match(data, threshold=0.5)
> print duplicates
[((1, 2, 3),
   (0.790,
      0.860,
      0.790)),
   ((4, 5),
      (0.720,
      0.720)),
   ((10, 11),
   (0.899,
      0.899))]
```

blocker.index_fields

A dictionary of the Index Predicates that will used for blocking. The keys are the fields the predicates will operate on.

```
blocker.index(field_data, field)
```

Indexes the data from a field for use in a index predicate.

Parameters

- **field data** (set) The unique field values that appear in your data.
- **field** (*string*) The name of the field

```
for field in deduper.blocker.index_fields :
    field_data = set(record[field] for record in data)
    deduper.index(field_data, field)
```

blocker (data)

Generate the predicates for records. Yields tuples of (predicate, record_id).

Parameters data (list) – A sequence of tuples of (record_id, record_dict). Can often be created by data_dict.items().

```
> data = [(1, {'name' : 'bob'}), (2, {'name' : 'suzanne'})]
> blocked_ids = deduper.blocker(data)
> print list(blocked_ids)
[('foo:1', 1), ..., ('bar:1', 100)]
```

```
matchBlocks (blocks, threshold=.5)
```

Partitions blocked data and returns a list of clusters, where each cluster is a tuple of record ids

Keyword arguments

Parameters

• **blocks** (*list*) – Sequence of records blocks. Each record block is a tuple containing records to compare. Each block should contain two or more records. Along with each record, there should also be information on the blocks that cover that record.

For example, if we have three records:

```
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Sam', 'address' : '123 Main'})
```

and two predicates: "Whole name" and "Whole address". These predicates will produce the following blocks:

```
# Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})

# Block 2 (Whole name)
(3, {'name' : 'Sam', 'address' : '123 Main'})

# Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Sam', 'address' : '123 Main'})
```

So, the blocks you feed to matchBlocks should look like this, after filtering out the singleton block.

Within each block, dedupe will compare every pair of records. This is expensive. Checking to see if two sets intersect is much cheaper, and if the block coverage information for two records does intersect, that means that this pair of records has been compared in a previous block, and dedupe will skip comparing this pair of records again.

• **threshold** (float) – Number between 0 and 1 (default is .5). We will only consider as duplicates record pairs as duplicates if their estimated duplicate likelihood is greater than the threshold.

Lowering the number will increase recall, raising it will increase precision.

classifier

By default, the classifier is a L2 regularized logistic regression classifier. If you want to use a different

classifier, you can overwrite this attribute with your custom object. Your classifier object must be have *fit* and *predict_proba* methods, like sklearn models.

```
from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()
```

thresholdBlocks (blocks, recall_weight=1.5)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks and matchBlocks. This methods require you to create blocks of records. See the documentation for the matchBlocks method for how to construct blocks. .. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

Parameters

- blocks (list) See `matchBlocks`
- **recall_weight** (*float*) Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
writeSettings (file_obj[, index=False])
```

Write a settings file that contains the data model and predicates to a file object.

Parameters

- file_obj (file) File object.
- **bool** (index) Should the indexes of index predicates be saved. You will probably only want to call this after indexing all of your records.

```
with open('my_learned_settings', 'wb') as f:
    deduper.writeSettings(f, indexes=True)
```

loaded_indices

Indicates whether indices for index predicates was loaded from a settings file.

RecordLink Objects

Class for active learning record linkage.

Use RecordLinkMatching when you have two datasets that you want to merge. Each dataset, individually, should contain no duplicates. A record from the first dataset can match one and only one record from the second dataset and vice versa. A record from the first dataset need not match any record from the second dataset and vice versa.

For larger datasets, you will need to use the thresholdBlocks and matchBlocks. This methods require you to create blocks of records. For RecordLink, each blocks should be a pairs of dictionaries of records. Each block consists of all the records that share a particular predicate, as output by the blocker method of RecordLink.

Within a block, the first dictionary should consist of records from the first dataset, with the keys being record ids and the values being the record. The second dictionary should consist of records from the dataset.

Example

```
> data_1 = {'A1' : {'name' : 'howard'}}
> data_2 = {'B1' : {'name' : 'howie'}}
...
> blocks = defaultdict(lambda : ({}, {}))
>
    for block_key, record_id in linker.blocker(data_1.items()) :
        blocks[block_key][0].update({record_id : data_1[record_id]})
        for block_key, record_id in linker.blocker(data_2.items()) :
            if block_key in blocks :
                 blocks[block_key][1].update({record_id : data_2[record_id]})
>            blocked_data = blocks.values()
> print blocked_data
[({'A1' : {'name' : 'howard'}}, {'B1' : {'name' : 'howie'}})]
```

class RecordLink (variable_definition, [data_sample, [[num_cores]])

Initialize a Dedupe object with a variable definition

Parameters

- **variable_definition** (dict) A variable definition is list of dictionaries describing the variables will be used for training a model.
- num_cores (int) the number of cpus to use for parallel processing, defaults to the number of cpus available on the machine
- data_sample __DEPRECATED__

We assume that the fields you want to compare across datasets have the same field name.

```
sample (data_1, data_2[, sample_size=150000[, blocked_proportion=0.5[, original_length_1[, origi-
nal_length_2]]]])
```

In order to learn how to link your records, dedupe needs a sample of your records to train on. This method takes a mixture of random sample of pairs of records and a selection of pairs of records that are much more likely to be duplicates.

Parameters

- data_1 (dict) A dictionary of records from first dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.
- data_2 (dict) A dictionary of records from second dataset, same form as data_1
- sample size (int) The size of the sample to draw. Defaults to 150,000
- **blocked_proportion** (*float*) The proportion of record pairs to be sampled from similar records, as opposed to randomly selected pairs. Defaults to 0.5.
- original_length_1 If data_1 is a subsample of your first dataset, original_length_1 should be the size of the complete first dataset. By default, original_length_1 defaults to the length of data_1
- original_length_2 If data_2 is a subsample of your first dataset, original_length_2 should be the size of the complete first dataset. By default, original_length_2 defaults to the length of data_2

```
linker.sample(data_1, data_2, 150000)
```

threshold(data_1, data_2, recall_weight)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of data.

Parameters

- data_1 (dict) a dictionary of records from first dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.
- data_2 (dict) a dictionary of records from second dataset, same form as data_1
- **recall_weight** (float) sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
> threshold = deduper.threshold(data_1, data_2, recall_weight=2)
> print threshold
0.21
```

match (data_1, data_2, threshold)

Identifies pairs of records that refer to the same entity, returns tuples containing a set of record ids and a confidence score as a float between 0 and 1. The record_ids within each set should refer to the same entity and the confidence score is the estimated probability that the records refer to the same entity.

This method should only used for small to moderately sized datasets for larger data, use matchBlocks

Parameters

- data_1 (dict) a dictionary of records from first dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.
- data 2 (dict) a dictionary of records from second dataset, same form as data 1
- **threshold** (*float*) a number between 0 and 1 (default is 0.5). We will consider records as potential duplicates if the predicted probability of being a duplicate is above the threshold.

Lowering the number will increase recall, raising it will increase precision

```
matchBlocks (blocks[, threshold=.5])
```

Partitions blocked data and returns a list of clusters, where each cluster is a tuple of record ids

Keyword arguments

Parameters

• **blocks** (*list*) – Sequence of records blocks. Each record block is a tuple containing two sequences of records, the records from the first data set and the records from the second dataset. Within each block there should be at least one record from each datasets. Along with each record, there should also be information on the blocks that cover that record.

For example, if we have two records from dataset A and one record from dataset B:

```
# Dataset A
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})

# Dataset B
(3, {'name' : 'Pat', 'address' : '123 Main'})
```

and two predicates: "Whole name" and "Whole address". These predicates will produce the following blocks:

```
# Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})
```

```
# Block 2 (Whole name)
(2, {'name' : 'Sam', 'address' : '123 Main'})

# Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})
```

So, the blocks you feed to matchBlocks should look like this,

Within each block, dedupe will compare every pair of records. This is expensive. Checking to see if two sets intersect is much cheaper, and if the block coverage information for two records does intersect, that means that this pair of records has been compared in a previous block, and dedupe will skip comparing this pair of records again.

• **threshold** (*float*) – Number between 0 and 1 (default is .5). We will only consider as duplicates record pairs as duplicates if their estimated duplicate likelihood is greater than the threshold.

Lowering the number will increase recall, raising it will increase precision.

uncertainPairs()

Returns a list of pairs of records from the sample of record pairs tuples that Dedupe is most curious to have labeled.

This method is mainly useful for building a user interface for training a matching model.

```
> pair = deduper.uncertainPairs()
> print pair
[({'name' : 'Georgie Porgie'}, {'name' : 'Georgette Porgette'})]
```

markPairs (labeled_examples)

18

Add users labeled pairs of records to training data and update the matching model

This method is useful for building a user interface for training a matching model or for adding training data from an existing source.

Parameters labeled_examples (dict) - a dictionary with two keys, match and distinct the values are lists that can contain pairs of records.

train([recall=0.95[, index_predicates=True]])

Learn final pairwise classifier and blocking rules. Requires that adequate training data has been already been provided.

Parameters

• **recall** (float) – The proportion of true dupe pairs in our training data that that we the learned blocks must cover. If we lower the recall, there will be pairs of true dupes that we will never directly compare.

recall should be a float between 0.0 and 1.0, the default is 0.95

• **index_predicates** (bool) – Should dedupe consider predicates that rely upon indexing the data. Index predicates can be slower and take substantial memory.

Defaults to True.

```
deduper.train()
```

writeTraining (file_obj)

Write json data that contains labeled examples to a file object.

Parameters file_obj (file) - File object.

```
with open('./my_training.json', 'w') as f:
    deduper.writeTraining(f)
```

readTraining (training_file)

Read training from previously saved training data file object

Parameters training_file (file) - File object containing training data

```
with open('./my_training.json') as f:
   deduper.readTraining(f)
```

cleanupTraining()

Delete data we used for training.

data_sample, training_pairs, training_data, and activeLearner can be very large objects. When you are done training you may want to free up the memory they use.

```
deduper.cleanupTraining()
```

classifier

By default, the classifier is a L2 regularized logistic regression classifier. If you want to use a different classifier, you can overwrite this attribute with your custom object. Your classifier object must be have *fit* and *predict_proba* methods, like sklearn models.

```
from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()
```

thresholdBlocks (blocks, recall weight=1.5)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks and matchBlocks. This methods require you to create blocks of records. See the documentation for the matchBlocks method for how to construct blocks. .. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

Parameters

- blocks (list) See `matchBlocks`
- **recall_weight** (float) Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
writeSettings (file_obj[, index=False])
```

Write a settings file that contains the data model and predicates to a file object.

Parameters

- **file_obj** (file) File object.
- **bool** (index) Should the indexes of index predicates be saved. You will probably only want to call this after indexing all of your records.

```
with open('my_learned_settings', 'wb') as f:
    deduper.writeSettings(f, indexes=True)
```

loaded indices

Indicates whether indices for index predicates was loaded from a settings file.

StaticRecordLink Objects

Class for record linkage using saved settings. If you have already trained a record linkage instance, you can load the saved settings with StaticRecordLink.

```
{\bf class} \; {\bf StaticRecordLink} \; (settings\_file \big[, num\_cores \, \big])
```

Initialize a Dedupe object with saved settings

Parameters

- **settings_file** (*str*) File object containing settings data produced from the *RecordLink.writeSettings()* of a previous, active Dedupe object.
- num_cores (int) the number of cpus to use for parallel processing, defaults to the number of cpus available on the machine

```
with open('my_settings_file', 'rb') as f:
   deduper = StaticDedupe(f)
```

threshold(data_1, data_2, recall_weight)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of data.

Parameters

• data_1 (dict) – a dictionary of records from first dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.

- data_2 (dict) a dictionary of records from second dataset, same form as data_1
- **recall_weight** (float) sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
> threshold = deduper.threshold(data_1, data_2, recall_weight=2)
> print threshold
0.21
```

match (data_1, data_2, threshold)

Identifies pairs of records that refer to the same entity, returns tuples containing a set of record ids and a confidence score as a float between 0 and 1. The record_ids within each set should refer to the same entity and the confidence score is the estimated probability that the records refer to the same entity.

This method should only used for small to moderately sized datasets for larger data, use matchBlocks

Parameters

- data_1 (dict) a dictionary of records from first dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.
- data_2 (dict) a dictionary of records from second dataset, same form as data_1
- **threshold** (*float*) a number between 0 and 1 (default is 0.5). We will consider records as potential duplicates if the predicted probability of being a duplicate is above the threshold.

Lowering the number will increase recall, raising it will increase precision

```
matchBlocks (blocks, threshold=.5)
```

Partitions blocked data and returns a list of clusters, where each cluster is a tuple of record ids

Keyword arguments

Parameters

• **blocks** (*list*) – Sequence of records blocks. Each record block is a tuple containing two sequences of records, the records from the first data set and the records from the second dataset. Within each block there should be at least one record from each datasets. Along with each record, there should also be information on the blocks that cover that record.

For example, if we have two records from dataset A and one record from dataset B:

```
# Dataset A
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})

# Dataset B
(3, {'name' : 'Pat', 'address' : '123 Main'})
```

and two predicates: "Whole name" and "Whole address". These predicates will produce the following blocks:

```
# Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

# Block 2 (Whole name)
(2, {'name' : 'Sam', 'address' : '123 Main'})

# Block 3 (Whole address
```

```
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})
```

So, the blocks you feed to matchBlocks should look like this,

Within each block, dedupe will compare every pair of records. This is expensive. Checking to see if two sets intersect is much cheaper, and if the block coverage information for two records does intersect, that means that this pair of records has been compared in a previous block, and dedupe will skip comparing this pair of records again.

• **threshold** (*float*) – Number between 0 and 1 (default is .5). We will only consider as duplicates record pairs as duplicates if their estimated duplicate likelihood is greater than the threshold.

Lowering the number will increase recall, raising it will increase precision.

classifier

By default, the classifier is a L2 regularized logistic regression classifier. If you want to use a different classifier, you can overwrite this attribute with your custom object. Your classifier object must be have *fit* and *predict_proba* methods, like sklearn models.

```
from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()
```

thresholdBlocks (blocks, recall_weight=1.5)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks and matchBlocks. This methods require you to create blocks of records. See the documentation for the matchBlocks method for how to construct blocks. .. code:: python

threshold = deduper.thresholdBlocks(blocked data, recall weight=2)

Keyword arguments

Parameters

• blocks (list) - See `matchBlocks`

• **recall_weight** (*float*) – Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
writeSettings (file_obj[, index=False])
```

Write a settings file that contains the data model and predicates to a file object.

Parameters

- **file_obj** (file) File object.
- **bool** (index) Should the indexes of index predicates be saved. You will probably only want to call this after indexing all of your records.

```
with open('my_learned_settings', 'wb') as f:
    deduper.writeSettings(f, indexes=True)
```

loaded indices

Indicates whether indices for index predicates was loaded from a settings file.

Gazetteer Objects

Class for active learning gazetteer matching.

Gazetteer matching is for matching a messy data set against a 'canonical dataset', i.e. one that does not have any duplicates. This class is useful for such tasks as matching messy addresses against a clean list.

The interface is the same as for RecordLink objects except for a couple of methods.

class Gazetteer

index (data)

Add records to the index of records to match against. If a record in *canonical_data* has the same key as a previously indexed record, the old record will be replaced.

Parameters data (dict) – a dictionary of records where the keys are record_ids and the values are dictionaries with the keys being field_names

unindex(data):

Remove records from the index of records to match against.

Parameters data (dict) – a dictionary of records where the keys are record_ids and the values are dictionaries with the keys being field_names

```
{\tt match}\ (messy\_data, threshold = 0.5, n\_matches = 1)
```

Identifies pairs of records that could refer to the same entity, returns tuples containing tuples of possible matches, with a confidence score for each match. The record_ids within each tuple should refer to potential matches from a messy data record to canonical records. The confidence score is the estimated probability that the records refer to the same entity.

Parameters

- messy_data (dict) a dictionary of records from a messy dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.
- **threshold** (*float*) a number between 0 and 1 (default is 0.5). We will consider records as potential duplicates if the predicted probability of being a duplicate is above the threshold.

Lowering the number will increase recall, raising it will increase precision

• n_matches (int) - the maximum number of possible matches from canonical_data to return for each record in messy_data. If set to *None* all possible matches above the threshold will be returned. Defaults to 1

threshold (messy_data, recall_weight = 1.5)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of data.

Parameters

- **messy_data** (dict) a dictionary of records from a messy dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.
- **recall_weight** (*float*) Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

matchBlocks (blocks, threshold=.5, n_matches=1)

Partitions blocked data and returns a list of clusters, where each cluster is a tuple of record ids

Parameters

• **blocks** (*list*) – Sequence of records blocks. Each record block is a tuple containing two sequences of records, the records from the messy data set and the records from the canonical dataset. Within each block there should be at least one record from each datasets. Along with each record, there should also be information on the blocks that cover that record.

For example, if we have two records from a messy dataset one record from a canonical dataset:

```
# Messy
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})

# Canonical
(3, {'name' : 'Pat', 'address' : '123 Main'})
```

and two predicates: "Whole name" and "Whole address". These predicates will produce the following blocks:

```
# Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

# Block 2 (Whole name)
(2, {'name' : 'Sam', 'address' : '123 Main'})

# Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})
```

So, the blocks you feed to matchBlocks should look like this,

• **threshold** (*float*) – Number between 0 and 1 (default is .5). We will only consider as duplicates record pairs as duplicates if their estimated duplicate likelihood is greater than the threshold.

Lowering the number will increase recall, raising it will increase precision.

• n_matches (int) - the maximum number of possible matches from canonical_data to return for each record in messy_data. If set to *None* all possible matches above the threshold will be returned. Defaults to 1

```
clustered_dupes = deduper.matchBlocks(blocked_data, threshold)
```

uncertainPairs()

Returns a list of pairs of records from the sample of record pairs tuples that Dedupe is most curious to have labeled.

This method is mainly useful for building a user interface for training a matching model.

```
> pair = deduper.uncertainPairs()
> print pair
[({'name' : 'Georgie Porgie'}, {'name' : 'Georgette Porgette'})]
```

markPairs (labeled_examples)

Add users labeled pairs of records to training data and update the matching model

This method is useful for building a user interface for training a matching model or for adding training data from an existing source.

Parameters labeled_examples (dict) - a dictionary with two keys, match and distinct the values are lists that can contain pairs of records.

$train([recall=0.95[, index_predicates=True]])$

Learn final pairwise classifier and blocking rules. Requires that adequate training data has been already been provided.

Parameters

• **recall** (float) – The proportion of true dupe pairs in our training data that that we the learned blocks must cover. If we lower the recall, there will be pairs of true dupes that we will never directly compare.

recall should be a float between 0.0 and 1.0, the default is 0.95

• **index_predicates** (bool) – Should dedupe consider predicates that rely upon indexing the data. Index predicates can be slower and take substantial memory.

Defaults to True.

```
deduper.train()
```

writeTraining(file_obj)

Write json data that contains labeled examples to a file object.

Parameters file_obj (file) - File object.

```
with open('./my_training.json', 'w') as f:
    deduper.writeTraining(f)
```

readTraining (training_file)

Read training from previously saved training data file object

Parameters training_file (file) – File object containing training data

```
with open('./my_training.json') as f:
    deduper.readTraining(f)
```

cleanupTraining()

Delete data we used for training.

data_sample, training_pairs, training_data, and activeLearner can be very large objects. When you are done training you may want to free up the memory they use.

```
deduper.cleanupTraining()
```

classifier

By default, the classifier is a L2 regularized logistic regression classifier. If you want to use a different classifier, you can overwrite this attribute with your custom object. Your classifier object must be have *fit* and *predict_proba* methods, like sklearn models.

```
from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()
```

thresholdBlocks (blocks, recall weight=1.5)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks and matchBlocks. This methods require you to create blocks of records. See the documentation for the matchBlocks method for how to construct blocks. .. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

Parameters

- blocks (list) See `matchBlocks`
- **recall_weight** (float) Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
writeSettings (file_obj[, index=False])
```

Write a settings file that contains the data model and predicates to a file object.

Parameters

- **file_obj** (file) File object.
- bool (index) Should the indexes of index predicates be saved. You will probably only want to call this after indexing all of your records.

```
with open('my_learned_settings', 'wb') as f:
    deduper.writeSettings(f, indexes=True)
```

loaded indices

Indicates whether indices for index predicates was loaded from a settings file.

StaticGazetteer Objects

Class for gazetter matching using saved settings. If you have already trained a gazetteer instance, you can load the saved settings with StaticGazetteer.

This class has the same interface as StaticRecordLink except for a couple of methods.

class StaticGazetteer

index (data)

Add records to the index of records to match against. If a record in *canonical_data* has the same key as a previously indexed record, the old record will be replaced.

Parameters data(dict) – a dictionary of records where the keys are record_ids and the values are dictionaries with the keys being field_names

unindex(data) :

Remove records from the index of records to match against.

Parameters data (dict) – a dictionary of records where the keys are record_ids and the values are dictionaries with the keys being field_names

```
match (messy_data, threshold=0.5, n_matches=1)
```

Identifies pairs of records that could refer to the same entity, returns tuples containing tuples of possible matches, with a confidence score for each match. The record_ids within each tuple should refer to potential matches from a messy data record to canonical records. The confidence score is the estimated probability that the records refer to the same entity.

Parameters

- messy_data (dict) a dictionary of records from a messy dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.
- **threshold** (*float*) a number between 0 and 1 (default is 0.5). We will consider records as potential duplicates if the predicted probability of being a duplicate is above the threshold.

Lowering the number will increase recall, raising it will increase precision

• n_matches (int) - the maximum number of possible matches from canonical_data to return for each record in messy_data. If set to *None* all possible matches above the threshold will be returned. Defaults to 1

threshold (messy data, recall weight = 1.5)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of data.

Parameters

- messy_data (dict) a dictionary of records from a messy dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.
- **recall_weight** (float) Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

matchBlocks (blocks, threshold=.5, n_matches=1)

Partitions blocked data and returns a list of clusters, where each cluster is a tuple of record ids

Parameters

• **blocks** (list) – Sequence of records blocks. Each record block is a tuple containing two sequences of records, the records from the messy data set and the records from the canonical dataset. Within each block there should be at least one record from each datasets. Along with each record, there should also be information on the blocks that cover that record.

For example, if we have two records from a messy dataset one record from a canonical dataset:

```
# Messy
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})

# Canonical
(3, {'name' : 'Pat', 'address' : '123 Main'})
```

and two predicates: "Whole name" and "Whole address". These predicates will produce the following blocks:

```
# Block 1 (Whole name)
(1, {'name' : 'Pat', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})

# Block 2 (Whole name)
(2, {'name' : 'Sam', 'address' : '123 Main'})

# Block 3 (Whole address
(1, {'name' : 'Pat', 'address' : '123 Main'})
(2, {'name' : 'Sam', 'address' : '123 Main'})
(3, {'name' : 'Pat', 'address' : '123 Main'})
```

So, the blocks you feed to matchBlocks should look like this,

```
)
)
linker.matchBlocks(blocks)
```

• **threshold** (*float*) – Number between 0 and 1 (default is .5). We will only consider as duplicates record pairs as duplicates if their estimated duplicate likelihood is greater than the threshold.

Lowering the number will increase recall, raising it will increase precision.

• n_matches (int) - the maximum number of possible matches from canonical_data to return for each record in messy_data. If set to *None* all possible matches above the threshold will be returned. Defaults to 1

```
clustered_dupes = deduper.matchBlocks(blocked_data, threshold)
```

classifier

By default, the classifier is a L2 regularized logistic regression classifier. If you want to use a different classifier, you can overwrite this attribute with your custom object. Your classifier object must be have *fit* and *predict_proba* methods, like sklearn models.

```
from sklearn.linear_model import LogisticRegression

deduper = dedupe.Dedupe(fields)
deduper.classifier = LogisticRegression()
```

thresholdBlocks (blocks, recall_weight=1.5)

Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of blocked data.

For larger datasets, you will need to use the thresholdBlocks and matchBlocks. This methods require you to create blocks of records. See the documentation for the matchBlocks method for how to construct blocks. .. code:: python

threshold = deduper.thresholdBlocks(blocked_data, recall_weight=2)

Keyword arguments

Parameters

- blocks (list) See `matchBlocks`
- **recall_weight** (float) Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.

```
writeSettings (file_obj[, index=False])
```

Write a settings file that contains the data model and predicates to a file object.

Parameters

- **file_obj** (file) File object.
- **bool** (index) Should the indexes of index predicates be saved. You will probably only want to call this after indexing all of your records.

```
with open('my_learned_settings', 'wb') as f:
    deduper.writeSettings(f, indexes=True)
```

loaded_indices

Indicates whether indices for index predicates was loaded from a settings file.

Convenience Functions

consoleLabel(matcher)

Train a matcher instance (Dedupe or RecordLink) from the command line. Example

```
> deduper = dedupe.Dedupe(variables)
> deduper.sample(data)
> dedupe.consoleLabel(deduper)
```

trainingDataLink (data_1, data_2, common_key[, training_size])

Construct training data for consumption by the RecordLink.markPairs () from already linked datasets.

Parameters

- data_1 (dict) a dictionary of records from first dataset, where the keys are record_ids and the values are dictionaries with the keys being field names.
- data_2 (dict) a dictionary of records from second dataset, same form as data_1
- common_key (str) the name of the record field that uniquely identifies a match
- training_size (int) the rough limit of the number of training examples, defaults to 50000

Warning

Every match must be identified by the sharing of a common key. This function assumes that if two records do not share a common key then they are distinct records.

trainingDataDedupe (data, common_key[, training_size])

Construct training data for consumption by the <code>Dedupe.markPairs()</code> from an already deduplicated dataset.

Parameters

- data (dict) a dictionary of records, where the keys are record_ids and the values are
 dictionaries with the keys being field names
- **common_key** (str) the name of the record field that uniquely identifies a match
- training_size (int) the rough limit of the number of training examples, defaults to 50000

Warning

Every match must be identified by the sharing of a common key. This function assumes that if two records do not share a common key then they are distinct records.

canonicalize(record cluster)

Constructs a canonical representation of a duplicate cluster by finding canonical values for each field

Parameters record_cluster (list) – A list of records within a duplicate cluster, where the records are dictionaries with field names as keys and field values as values

Variable definitions

Core Variables

A variable definition describes the records that you want to match. It is a dictionary where the keys are the fields and the values are the field specification

String Types

A 'String' type variable must declare the name of the record field to compare a 'String' type declaration ex. {'field': 'Address', type:'String'} The string type expects fields to be of class string.

String types are compared using affine gap string distance.

ShortString Types

Short strings are just like String types except that dedupe will not try to learn a canopy blocking rule for these fields, which can speed up the training phase considerably. Zip codes and city names are good candidates for this type. If in doubt, just use 'String.'

```
{'field': 'Zipcode', type: 'ShortString'}
```

Text Types

If you want to compare fields comparing long blocks of text, like product descriptions or article abstracts you should use this type. Text types fields are compared using the cosine similarity metric.

Basically, this is a measurement of the amount of words that two documents have in common. This measure can be made more useful the overlap of rare words counts more than the overlap of common words. If provide a sequence of example fields than (a corpus), dedupe will learn these weights for you.

If you don't want to adjust the measure to your data, just leave 'corpus' out of the variable definition.

```
{'field' : 'Product description', 'type' : 'Text'}
```

Custom Types

A 'Custom' type field must have specify the field it wants to compare, a 'type' declaration of 'Custom', and a 'comparator' declaration. The comparator must be a function that can take in two field values and return a number.

Example custom comparator:

```
def sameOrNotComparator(field_1, field_2) :
   if field_1 and field_2 :
      if field_1 == field_2 :
        return 0
   else:
      return 1
```

variable definition:

```
{'field' : 'Zip', 'type': 'Custom',
  'comparator' : sameOrNotComparator}
```

LatLong

A 'LatLong' type field must have as the name of a field and a 'type' declaration of custom. LatLong fields are compared using the Haversine Formula. A 'LatLong' type field must consist of tuples of floats corresponding to a latitude and a longitude.

```
{'field' : 'Location', 'type': 'LatLong'}}
```

Set

A 'Set' type field is for comparing lists of elements, like keywords or client names. Set types are very similar to *Text Types*. They use the same comparison function and you can also let dedupe learn which terms are common or rare by providing a corpus. Within a record, a Set types field have to be hashable sequences like tuples or frozensets.

or

```
{'field' : 'Co-authors', 'type': 'Set'}
}
```

Interaction

An interaction field multiplies the values of the multiple variables. An interaction variable is created with 'type' declaration of 'Interaction' and an 'interaction variables' declaration.

The 'interaction variables' must be a sequence of 'variable names' of other fields you have defined in your variable definition.

Interactions are good when the effect of two predictors is not simply additive.

```
[{'field': 'Name', 'variable name': 'name', 'type': 'String'},
    {'field': 'Zip', 'variable name': 'zip', 'type': 'Custom',
    'comparator': sameOrNotComparator},
    {'type': 'Interaction',
    'interaction variables': ['name', 'zip']}]
```

Exact

'Exact' variables measure whether two fields are exactly the same or not.

```
{'field' : 'city', 'type': 'Exact'}}
```

Exists

'Exists' variables measure whether both, one, or neither of the fields are defined. This can be useful if the presence or absence of a field tells you something about meaningful about the record.

```
{'field' : 'first_name', 'type': 'Exists'}
```

Categorical

Categorical variables are useful when you are dealing with qualitatively different types of things. For example, you may have data on businesses and you find that taxi cab businesses tend to have very similar names but law firms don't. Categorical variables would let you indicate whether two records are both taxi companies, both law firms, or one of each.

Dedupe would represents these three possibilities using two dummy variables:

```
taxi-taxi 0 0 lawyer-lawyer 1 0 taxi-lawyer 0 1
```

A categorical field declaration must include a list of all the different strings that you want to treat as different categories.

So if you data looks like this

```
'Name' 'Business Type'
AAA Taxi taxi
AA1 Taxi taxi
Hindelbert Esq lawyer
```

You would create a definition like:

```
{'field' : 'Business Type', 'type': 'Categorical', 'categories' : ['taxi', 'lawyer']}
```

Price

Price variables are useful for comparing positive, nonzero numbers like prices. The values of 'Price' field must be a positive float. If the value is 0 or negative, then an exception will be raised.

```
{'field' : 'cost', 'type': 'Price'}
```

Optional Variables

Address Type

An 'Address' variable should be used for United States addresses. It uses the usaddress package to split apart an address string into components like address number, street name, and street type and compares component to component.

```
{'field' : 'address', 'type' : 'Address'}
```

Install the dedupe-variable-address package for Address Type.

Name Type

A 'Name' variable should be used for a field that contains American names, corporations and households. It uses the probablepeople package to split apart an name string into components like give name, surname, generational suffix, for people names, and abbreviation, company type, and legal form for corporations.

```
{'field' : 'name', 'type' : 'Name'}
```

Install the dedupe-variable-name package for Name Type.

Fuzzy Category

A 'FuzzyCategorical' variable should be used for when you for categorical data that has variations. Occupations are example, where the you may have Attorney, Counsel, and Lawyer. For this variable type, you need to supply a corpus of records that contain your focal record and other field types. This corpus should either be all the data you are trying to link or a representative sample.

Install the dedupe-variable-fuzzycategory package for the FuzzyCategorical Type.

Missing Data

If the value of field is missing, that missing value should be represented as a None

If you want to model this missing data for a field, you can set 'has missing': True in the variable definition. This creates a new, additional field representing whether the data was present or not and zeros out the missing data.

If there is missing data, but you did not declare 'has missing': True then the missing data will simply be zeroed out and no field will be created to account for missing data.

This approach is called 'response augmented data' and is described in Benjamin Marlin's thesis "Missing Data Problems in Machine Learning". Basically, this approach says that, even without looking at the value of the field comparisons, the pattern of observed and missing responses will affect the probability that a pair of records are a match.

This approach makes a few assumptions that are usually not completely true:

- Whether a field is missing data is not associated with any other field missing data
- That the weighting of the observed differences in field A should be the same regardless of whether field B is missing.

If you define an an interaction with a field that you declared to have missing data, then has missing: True will also be set for the Interaction field.

Longer example of a variable definition:

```
{field' : 'cuisine', 'type' : 'String', 'has missing': True}
{'type' : 'Interaction', 'interaction variables' : ['name', 'city']}
]
```

Multiple Variables comparing same field

It is possible to define multiple variables that all compare the same variable.

For example

Will create two variables that both compare the 'name' field but in different ways.

Optional Edit Distance

For String, ShortString, Address, and Name fields, you can choose to use the a conditional random field distance measure for strings. This measure can give you more accurate results but is much slower than the default edit distance.

```
{'field' : 'name', 'type' : 'String', 'crf' : True}
```

Mac OS X Install Notes

Apple's implementation of BLAS does not support using BLAS calls on both sides of a fork.

The upshot of this is that you can't do parallel processing with numpy (which uses BLAS).

One way to get around this is to compile NumPy against a different implementation of BLAS such as OpenBLAS. Here's how you might go about that:

Install OpenBlas with Homebrew Science

You can install OpenBlas from with Homebrew Science.

```
$ brew install homebrew/science/openblas
```

Clone and build NumPy

```
$ git clone git://github.com/numpy/numpy.git numpy
$ cd numpy
$ pip uninstall numpy (if it is already installed)
$ cp site.cfg.example site.cfg
```

Edit site.cfg and uncomment/update the code to match below:

```
[DEFAULT]
library_dirs = /usr/local/opt/openblas/lib
include_dirs = /usr/local/opt/openblas/include
```

```
[atlas]
atlas_libs = openblas
libraries = openblas

[openblas]
libraries = openblas
library_dirs = /usr/local/opt/openblas/lib
include_dirs = /usr/local/opt/openblas/include
```

You may need to change the library_dirs and include_dirs paths to match where you installed OpenBlas (see http://stackoverflow.com/a/14391693/1907889 for details).

Then install with:

```
python setup.py build && python setup.py install
```

Then reinstall Dedupe:

```
pip uninstall Dedupe
python setup.py install
```

How it works

Matching Records

If you look at the following two records, you might think it's pretty clear that they are about the same person.

```
first name | last name | address | phone |
------

bob | roberts | 1600 pennsylvania ave. | 555-0123 |
Robert | Roberts | 1600 Pensylvannia Avenue |
```

However, I bet it would be pretty hard for you to explicitly write down all the reasons why you think these records are about the same Mr. Roberts.

Record similarity

One way that people have approached this problem is by saying that records that are more similar are more likely to be duplicates. That's a good first step, but then we have to precisely define what we mean for two records to be similar.

The default way that we do this in Dedupe is to use what's called a string metric. A string metric is an way of taking two strings and returning a number that is low if the strings are similar and high if they are dissimilar. One famous string metric is called the Hamming distance. It counts the number of substitutions that must be made to turn one string into another. For example, roberts and Roberts would have Hamming distance of 1 because we have to substitute r for R in order to turn roberts into Roberts.

There are lots of different string metrics, and we actually use a metric called the Affine Gap Distance, which is a variation on the Hamming distance.

Record by record or field by field

When we are calculating whether two records are similar we could treat each record as if it was a long string.

Alternately, we could compare field by field

The major advantage of comparing field by field is that we don't have to treat each field string distance equally. Maybe we think that its really important that the last names and addresses are similar but it's not as important that first name and phone numbers are close. We can express that importance with numeric weights, i.e.

```
record_distance = (0.5 * string_distance('bob', 'Robert')
+ 2.0 * string_distance('roberts', 'Roberts')
+ 2.0 * string_distance('1600 pennsylvania ave.', '1600_

Pensylvannia Avenue')
+ 0.5 * string_distance('555-0123', ''))
```

Setting weights and making decisions

Say we set our record_distance to be this weighted sum of field distances, just as we had above. Let's say we calculated the record_distance and we found that it was the beautiful number 8.

That number, by itself, is not that helpful. Ultimately, we are trying to decide whether a pair of records are duplicates, and I'm not sure what decision I should make if I see an 8. Does an 8 mean that the pair of records are really similar or really far apart, likely or unlikely to be duplicates. We'd like to define the record distances so that we can look at the number and know whether to decide whether it's a duplicate.

Also, I really would rather not have to set the weights by hand every time. It can be very tricky to know which fields are going to matter and even if I know that some fields are more important I'm not sure how to quantify it (is it 2 times more important or 1.3 times)?

Fortunately, we can solve both problems with a technique called regularized logistic regression. If we supply pairs of records that we label as either being duplicates or distinct, then Dedupe will learn a set of weights such that the record distance can easily be transformed into our best estimate of the probability that a pair of records are duplicates.

Once we have learned these good weights, we want to use them to find which records are duplicates. But turns out that doing this the naive way will usually not work, and we'll have to do something smarter.

Active learning

In order to learn those weights, Dedupe needs example pairs with labels. Most of the time, we will need people to supply those labels.

But the whole point of Dedupe is to save people's time, and that includes making good use of your labeling time so we use an approach called Active Learning.

Basically, Dedupe keeps track of bunch of unlabeled pairs and its currently learned weights. At any time, there will be record Dedupe will believe have a near a 50/50 chance of being a duplicate or distinct. Dedupe will learn more from seeing the label of this most uncertain of pairs then getting a label for any other record.

3.4. How it works

Dedupe picks this most uncertain pair of records about and asks the user to decide. Once it gets this label, it relearns the weights. With these new weights, there will now be a different record pair that Dedupe is most uncertain about, and that's the next one the user will be asked to label.

Other field distances

We have implemented a number of field distance measures. See the details about variables.

Making Smart Comparisons

Say we have magic function that takes in a pair of records and always returns a False if a pair of records are distinct and True if a pair of records refer to the same person or organization.

Let's say that this function was pretty slow. It always took one second to return.

How long would it take to duplicate a thousand records?

Within a dataset of thousand records, there are $\frac{1,000 \times 999}{2} = 499,500$ unique pairs of records. If we compared all of them using our magic function it would take six days.

But, one second is a **long** time, let's say we sped it up so that we can make 10,000 comparisons per second. Now we can get through our thousand-record-long dataset in less than a minute.

Feeling good about our super-fast comparison function, let's take on a dataset of 100,000 records. Now there are $\frac{100,000 \times 99,999}{2} = 4,999,950,000$ unique possible pairs. If we compare all of them with our super-fast comparison function, it will take six days again.

If we want to work with moderately sized data, we have to find a way of making fewer comparisons.

Duplicates are rare

In real world data, nearly all possible pairs of records are not duplicates.

In this four-record example below, only two pairs of records are duplicates—(1, 2) and (3, 4), while there are four unique pairs of records that are not duplicates—(1,3), (1,4), (2,3), and (2,4). Typically, as the size of the dataset grows, the fraction of pairs of records that are duplicates gets very small very quickly.

first name	last name	address	phone	record_id
bob	roberts	1600 pennsylvania ave.	555-0123	1
Robert	Roberts	1600 Pensylvannia Avenue		2
steve	Jones	123 Cowabunga Lane	555-0000	3
Stephen	Janes	123 Cawabunga Ln	444-555-0000	4

If we could only compare records that were true duplicates, we wouldn't run into the explosion of comparisons. Of course, if we already knew where the true duplicates were, we wouldn't need to compare any individual records. Unfortunately we don't, but we do quite well if just compare records that are somewhat similar.

Blocking

Duplicate records almost always share *something* in common. If we define groups of data that share something and only compare the records in that group, or *block*, then we can dramatically reduce the number of comparisons we will make. If we define these blocks well, then we will make very few comparisons and still have confidence that will compare records that truly are duplicates.

This task is called blocking, and we approach it in two ways: predicate blocks and canopies.

Predicate blocks

A predicate block is a bundle of records that all share a feature – a feature produced by a simple function called a predicate.

Predicate functions take in a record field, and output a set of features for that field. These features could be "the first 3 characters of the field," "every word in the field," and so on. Records that share the same feature become part of a block.

Let's take an example. Let's use a "first 3 character" predicate on the address field below..

first name	last name	address	phone	record_id
bob	roberts	1600 pennsylvania ave.	555-0123	1
Robert	Roberts	1600 Pensylvannia Avenue		2
steve	Jones	123 Cowabunga Lane	555-0000	3
Stephen	Janes	123 Cawabunga Ln	444-555-0000	4

That leaves us with two blocks - The '160' block, which contains records 1 and 2, and the '123' block, which contains records 3 and 4.

```
{'160' : (1,2) # tuple of record_ids
'123' : (3,4)
}
```

Again, we're applying the "first three words" predicate function to the address field in our data, the function outputs the following features – 160, 160, 123, 123 – and then we group together the records that have identical features into "blocks".

Others simple predicates Dedupe uses include:

- · whole field
- token field
- · common integer
- · same three char start
- · same five char start
- · same seven char start
- · near integers
- common four gram
- · common six gram

Index Blocks

Dedupe also uses another way of producing blocks from searching and index. First, we create a special data structure, like an inverted index, that lets us quickly find records similar to target records. We populate the index with all the unique values that appear in field.

When blocking, for each record we search the index for values similar to the record's field. We block together records that share at least one common search result.

Index predicates require building an index from all the unique values in a field. This can take substantial time and memory. Index predicates are also usually slower than predicate blocking.

3.4. How it works

Combining blocking rules

If it's good to put define blocks of records that share the same 'city' field, it might be even better to block records that share *both* the 'city' field *and* the 'zip code' field. Dedupe tries these cross-field blocks. These combinations blocks are called disjunctive blocks.

Learning good blocking rules for given data

Dedupe comes with a long set of predicates, and when these are combined Dedupe can have hundreds of possible blocking rules to choose from. We will want to find a small set of these rules that covers every labeled duplicated pair but minimizes the total number pairs dedupe will have to compare.

While we approach this problem by using greedy algorithms, particularly Chvatal's Greedy Set-Cover algorithm.

Grouping Duplicates

Once we have calculated the probability that pairs of record are duplicates or not, we still have a kind of thorny problem because it's not just pairs of records that can be duplicates. Three, four, thousands of records could all refer to the same entity (person, organization, ice cream flavor, etc.,) but we only have pairwise measures.

Let's say we have measured the following pairwise probabilities between records A, B, and C.

```
A -- 0.6 -- B -- 0.6 -- C
```

The probability that A and B are duplicates is 60%, the probability that B and C are duplicates is 60%, but what is the probability that A and C are duplicates?

Let's say that everything is going perfectly and we can say there's a 36% probability that A and C are duplicates. We'd probably want to say that A and C should not be considered duplicates.

Okay, then should we say that A and B are a duplicate pair and C is a distinct record or that A is the distinct record and that B and C are duplicates?

Well... this is a thorny problem, and we tried solving it a few different ways. In the end, we found that **hierarchical clustering with centroid linkage** gave us the best results. What this algorithm does is say that all points within some distance of centroid are part of the same group. In this example, B would be the centroid - and A, B, C and would all be put in the same group.

Unfortunately, a more principled answer does not exist because the estimated pairwise probabilities are not transitive.

Clustering the groups depends on us setting a threshold for group membership – the distance of the points to the centroid. Depending on how we choose that threshold, we'll get very different groups, and we will want to choose this threshold wisely.

In recent years, there has been some very exciting research that solves the problem of turning pairwise distances into clusters, by avoiding making pairwise comparisons altogether. Unfortunately, these developments are not compatible with Dedupe's pairwise approach. See, Michael Wick, et.al, 2012. "A Discriminative Hierarchical Model for Fast Coreference at Large Scale" and Rebecca C. Steorts, et. al., 2013. "A Bayesian Approach to Graphical Record Linkage and De-duplication".

Choosing a Good Threshold

Dedupe can predict the *probability* that a pair of records are duplicates. So, how should we decide that a pair of records really are duplicates?

To answer this question we need to know something about Precision and Recall. Why don't you check out the Wikipedia page and come back here.

There's always a trade-off between precision and recall. That's okay. As long as we know how much we care about precision vs. recall, we can define an F-score that will let us find a threshold for deciding when records are duplicates that is optimal for our priorities.

Typically, the way that we find that threshold is by looking at the true precision and recall of some data where we know their true labels - where we know the real duplicates. However, we will only get a good threshold if the labeled examples are representative of the data we are trying to classify.

So here's the problem - the labeled examples that we make with Dedupe are not at all representative, and that's by design. In the active learning step, we are not trying to find the most representative data examples. We're trying to find the ones that will teach us the most.

The approach we take here is to take a random sample of blocked data, and then calculate the pairwise probability that records will be duplicates within each block. From these probabilities we can calculate the expected number of duplicates and distinct pairs, so we can calculate the expected precision and recall.

Special Cases

The process we have been describing is for the most general case—when you have a dataset where an arbitrary number of records can all refer to the same entity.

There are certain special cases where we can make more assumptions about how records can be linked, which if true, make the problem much simpler.

One important case we call Record Linkage. Say you have two datasets and you want to find the records in each dataset that refer to the same thing. If you can assume that each dataset, individually, is unique, then this puts a big constraint on how records can match. If this uniqueness assumption holds, then (A) two records can only refer to the same entity if they are from different datasets and (B) no other record can match either of those two records.

Problems with real-world data

Journalists, academics, and businesses work hard to get big masses of data to learn about what people or organizations are doing. Unfortunately, once we get the data, we often can't answer our questions because we can't tell who is who.

In much real-world data, we do not have a way of absolutely deciding whether two records, say John Smith and J. Smith are referring to the same person. If these were records of campaign contribution data, did a John Smith give two donations or did John Smith and maybe Jane Smith give one contribution apiece?

People are pretty good at making these calls, if they have enough information. For example, I would be pretty confident that the following two records are the about the same person.

first name		last name		address		phone	
bob Robert				1600 pennsylvania 1600 Pensylvannia		555-0123	

If we have to decide which records in our data are about the same person or organization, then we could just go through by hand, compare every record, and decide which records are about the same entity.

This is very, very boring and can takes a **long** time. Dedupe is a software library that can make these decisions about whether records are about the same thing about as good as a person can, but quickly.

Bibliography

• http://research.microsoft.com/apps/pubs/default.aspx?id=153478

3.5. Bibliography 41

- http://cs.anu.edu.au/~Peter.Christen/data-matching-book-2012.html
- http://www.umiacs.umd.edu/~getoor/Tutorials/ER_VLDB2012.pdf

New School

• Steorts, Rebecca C., Rob Hall and Stephen Fienberg. "A Bayesian Approach to Record Linkage and Deduplication" December 2013. http://arxiv.org/abs/1312.4645

Very beautiful work. Records are matched to latent individuals. O(N) running time. Unsupervised, but everything hinges on tuning hyperparameters. This work only contemplates categorical variables.

To Read

- Domingos and Domingos Multi-relational record linkage. http://homes.cs.washington.edu/~pedrod/papers/mrdm04.pdf
- An Entity Based Model for Coreference Resolution http://people.cs.umass.edu/~mwick/MikeWeb/Publications_ files/wick09entity.pdf

Features

- machine learning reads in human labeled data to automatically create optimum weights and blocking rules
- runs on a laptop makes intelligent comparisons so you don't need a powerful server to run it
- built as a library so it can be integrated in to your applications or import scripts
- extensible supports adding custom data types, string comparators and blocking rules
- open source anyone can use, modify or add to it

44 Chapter 4. Features

Installation

```
pip install "numpy>=1.9"
pip install dedupe
```

Mac OS X Install Notes

With default configurations, dedupe cannot do parallel processing on Mac OS X. Read about instructions on how to enable this.

Using dedupe

Dedupe is a library and not a stand-alone command line tool. To demonstrate its usage, we have come up with a few example recipes for different sized datasets for you (repo, as well as annotated source code:

- Small data deduplication
- Bigger data deduplication ~700K
- Record Linkage
- Postgres
- Patent Author Disambiguation

			_
C	ΙΔΡ.	TER	· /

Errors / Bugs

If something is not behaving intuitively, it is a bug, and should be reported. Report it here

CHAP ⁻	TED	8
CHAP	IEK	U

Contributing to dedupe

Check out dedupe repo for how to contribute to the library.

Check out dedupe-examples for how to contribute a useful example of using dedupe.

					\cap
CH	IΛ	D		\Box	u
\cup Γ	1/4	Г	ı⊏	П	J

Citing dedupe

If you use Dedupe in an academic work, please give this citation:

Gregg, Forest and Derek Eder. 2015. Dedupe. https://github.com/datamade/dedupe.

Indices and tables

- genindex
- modindex
- search

Index

В	M			
blocker() (Dedupe method), 10	markPairs() (Dedupe method), 8			
blocker() (StaticDedupe method), 13	markPairs() (Gazetteer method), 25			
C	markPairs() (RecordLink method), 18 match() (Dedupe method), 9			
canonicalize() (built-in function), 30 classifier (Dedupe attribute), 11 classifier (Gazetteer attribute), 26 classifier (RecordLink attribute), 19 classifier (StaticDedupe attribute), 14 classifier (StaticGazetteer attribute), 29 classifier (StaticRecordLink attribute), 22 cleanupTraining() (Dedupe method), 9 cleanupTraining() (Gazetteer method), 26 cleanupTraining() (RecordLink method), 19 consoleLabel() (built-in function), 30	match() (Gazetteer method), 23 match() (RecordLink method), 17 match() (StaticDedupe method), 12 match() (StaticGazetteer method), 27 match() (StaticRecordLink method), 21 matchBlocks() (Dedupe method), 10 matchBlocks() (Gazetteer method), 24 matchBlocks() (RecordLink method), 17 matchBlocks() (StaticDedupe method), 13 matchBlocks() (StaticGazetteer method), 28 matchBlocks() (StaticGazetteer method), 28 matchBlocks() (StaticRecordLink method), 21			
D	R			
Dedupe (built-in class), 7	readTraining() (Dedupe method), 9			
G	readTraining() (Gazetteer method), 26 readTraining() (RecordLink method), 19			
Gazetteer (built-in class), 23	RecordLink (built-in class), 16			
I	S			
index() (Dedupe.blocker method), 10 index() (Gazetteer method), 23 index() (StaticDedupe.blocker method), 13 index() (StaticGazetteer method), 27 index_fields (Dedupe.blocker attribute), 10 index_fields (StaticDedupe.blocker attribute), 13	sample() (Dedupe method), 7 sample() (RecordLink method), 16 StaticDedupe (built-in class), 12 StaticGazetteer (built-in class), 27 StaticRecordLink (built-in class), 20			
·	T			
L loaded_indices (Dedupe attribute), 12 loaded_indices (Gazetteer attribute), 27 loaded_indices (RecordLink attribute), 20 loaded_indices (StaticDedupe attribute), 15 loaded_indices (StaticGazetteer attribute), 29 loaded_indices (StaticRecordLink attribute), 23	threshold() (Dedupe method), 9 threshold() (Gazetteer method), 24 threshold() (RecordLink method), 16 threshold() (StaticDedupe method), 12 threshold() (StaticGazetteer method), 27 threshold() (StaticRecordLink method), 20 thresholdBlocks() (Dedupe method), 11 thresholdBlocks() (Gazetteer method), 26			

```
thresholdBlocks() (RecordLink method), 19
thresholdBlocks() (StaticDedupe method), 15
thresholdBlocks() (StaticGazetteer method), 29
thresholdBlocks() (StaticRecordLink method), 22
train() (Dedupe method), 8
train() (Gazetteer method), 25
train() (RecordLink method), 19
trainingDataDedupe() (built-in function), 30
trainingDataLink() (built-in function), 30
U
uncertainPairs() (Dedupe method), 8
uncertainPairs() (Gazetteer method), 25
uncertainPairs() (RecordLink method), 18
W
writeSettings() (Dedupe method), 12
writeSettings() (Gazetteer method), 26
writeSettings() (RecordLink method), 20
writeSettings() (StaticDedupe method), 15
writeSettings() (StaticGazetteer method), 29
```

writeSettings() (StaticRecordLink method), 23

writeTraining() (Dedupe method), 8 writeTraining() (Gazetteer method), 26 writeTraining() (RecordLink method), 19

58 Index